
AJIT: Accountable Just-in-Time Network Resource Allocation
with Smart Contracts

Tooba Faisal
King’s College London, UK

Damiano Di Francesco Maesa
University of Cambridge, UK

Nishanth Sastry
University of Surrey, UK

King’s College London, UK

Simone Mangiante
Vodafone Group R&D, UK

ABSTRACT
New applications such as remote surgery and connected cars, which
are being touted as use cases for 5G and beyond, are mission-critical.
As such, communications infrastructure needs to support and en-
force stringent and guaranteed levels of service before such applica-
tions can take off. However, from an operator’s perspective, it can
be difficult to provide uniformly high levels of service over long
durations or large regions. As network conditions change over time,
or when a mobile end point goes to regions with poor coverage,
it may be difficult for the operator to support previously agreed
upon service agreements that are too stringent. Second, from a con-
sumer’s perspective, purchasing a stringent service level agreement
with an operator can also be expensive. Finally, failures in mission
critical applications can lead to disasters, so infrastructure should
support assignment of liabilities when a guaranteed service level is
reneged upon – this is a difficult problem because both the operator
and the customer have an incentive to lay the blame on each other
to avoid liabilities of poor service.

To address the above problems, we propose AJIT, an architec-
ture that allows creating fine-grained short-term contracts between
operator and consumer. AJIT uses smart contracts to allow dynam-
ically changing service levels so that more expensive and stringent
levels of service need only be requested by a customer for short
durations when the application needs it, and operator agrees to the
SLA only when the infrastructure is able to support the demand.
Second, AJIT uses trusted enclaves to do the accounting of packet
deliveries such that neither the customer requesting guaranteed
service levels for mission-critical applications, nor the operator
providing the infrastructure support, can cheat.

CCS CONCEPTS
• Networks → Network management; Peer-to-peer networks;
Mobile networks; Network monitoring.

KEYWORDS
SLAs, Smart Contracts, DLTs, PDLs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiArch’20, September 21, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8081-2/20/09. . . $15.00
https://doi.org/10.1145/3411043.3412506

ACM Reference Format:
Tooba Faisal, Damiano Di Francesco Maesa, Nishanth Sastry, and Simone
Mangiante. 2020. AJIT: Accountable Just-in-Time Network Resource Al-
location with Smart Contracts. In ACM MobiArch 2020 The 15th Workshop
on Mobility in the Evolving Internet Architecture (MobiArch’20), Septem-
ber 21, 2020, London, United Kingdom. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3411043.3412506

1 INTRODUCTION
This paper is motivated by the key insight that new applications
such as remote surgery and connected cars, which are being envi-
sioned as the “flagship” or “killer” applications for 5G and beyond,
are mission-critical applications. Failures in these applications can
have disastrous consequences, possibly leading to loss of human
lives. Therefore, to support such applications, the next generation
of mobile architectures will have to greatly enhance their support
for guaranteed service levels. Furthermore, to scale, such support
will have to be provided efficiently and inexpensively.

We identify three limitations in current networks, in their ability
to support mission-critical applications.

1) Service Level Guarantees are expensive for the consumer
Maintaining a high level of service guarantees can be expensive

and mostly unnecessary for consumers. For example, consider a
connected car, whose connectivity may be mostly used for non-
critical applications such as entertainment, or traffic updates. This
can be handled with a Service Level Agreement (SLA), not unlike
today’s “data” contracts, which offer a “best effort” service at an
affordable price. However, the same car may, for a short duration,
need to transmit information about emergency braking to other
cars in its vicinity. This requires high reliability and low latency. A
single stringent SLA that promises five-nines reliability and ultra-
low latency all the time can be too expensive for the users of today’s
networks. At the same time, a standard “best effort” service level is
not suitable during special occasions.

2) Stringent SLAs are difficult to honour for the operator
Stringent SLAs that need to be upheld at all times and in all

locations can be difficult for operators to honour. For example, an
operator may be able to support stringent SLAs for connected cars
when they are in a region of the country where the operator has a
dense and well-provisioned infrastructure, but the same operator
may struggle to support even basic connectivity in the other areas.
Even in well-provisioned geographic regions, an operator may
temporarily be congested and therefore unable to offer high levels
of reliability. Thus, even if customers are willing to pay, static
SLAs that hold at all times and all locations can be impractical for
operators to support when the consumer is a mobile endpoint [20]

https://doi.org/10.1145/3411043.3412506
https://doi.org/10.1145/3411043.3412506

MobiArch’20, September 21, 2020, London, United Kingdom Faisal, et al.

such as a car, and mobile architectures will need to support service
requirements that may change dynamically efficiently.

3) Fine-grained Assignment of Liabilities is challenging
Even if operators can support stringent SLAs, the critical nature

of applications such as connected cars or remote surgery requires a
fine-grained assignment of liabilities when the SLAs are violated: If
a failure occurs on the operating table during remote surgery or an
accident on the road, it is vital to be able to pinpoint precisely where
the fault lies. In particular, the network has always been a “blackbox”
and there is no easy solution for resolving whether a network
operator is at fault due to not meeting SLA requirements. Both the
network operator and the customer who obtains connectivity with
a guaranteed level of service have every incentive to blame each
other and avoid liability, and there is no Trusted Third Party (TTP),
who can monitor and ensure accountability.

To address the above three limitations, this paper proposes the
concept of using smart contracts to advertise and automatically
execute SLAs in a just-in-time and accountable manner. Specifi-
cally, smart contracts are inherently transparent, immutable, and
automated. Once executed, a smart contract binds the network
operator to a service level and the customer to the payment for
that service, thereby providing accountability on both sides. Smart
contracts can be executed just-in-time when a particular type of
service is required, and only for the given duration of time that that
service level is needed, thereby providing service level guarantees
in a dynamic, fine-grained context specific fashion. The ability to
dynamically change agreed upon service levels in a fine-grained
fashion will address the dual realities that customers may not need
the same level of service at all times and that operators may not be
able to provide such guarantees at all times and all locations.

Furthermore, the SLA can be tailored to specific contexts in a
fine-grained fashion. As indicative examples, there could be SLAs
that hold over specific time windows as mentioned above (e.g., an
agreement about maximum allowed latency for the duration of a
remote surgery), or particular locations (e.g., a zero packet loss guar-
antee when cars form a platoon [35] in a dangerous mountain pass
road). SLAs can also be made specific in other ways. For example,
a car in a platooning situation needs high-reliability connectivity
only to reach other cars within the same platoon, rather than to all
other Internet endpoints.

At the implementation level, such guaranteed levels of service
require reservation of resources. In this effort, we propose to reserve
resources through dedicated network slices, which can be created
based on parameterised templates to fit various standardised use
cases such as remote surgery or car platoons. To scalably monitor
whether packets have been delivered in accordance with an SLA,
we need detailed housekeeping from both the operator end and the
consumer end about the delivery state of packets, the experienced
loss and delay [10], etc. This housekeeping needs to ensure that
neither the operator nor the consumer has a chance to lie, and both
parties agree with the results. We achieve this by executing signed
housekeeping code in a secure enclave that cannot be tampered by
either party.

2 RELATEDWORK
Accountability: Today’s internet is a best-effort service, although
there have been several calls for accountability. Andersen et al. [8]
uses accountability in the sense of understandingwho is responsible
for a given packet. Argyryaki studied the feasibility of per-packet
accountability, and understanding packet loss [9, 10]. Such tech-
niques can be used for better monitoring in our architecture. A
decentralised, hierarchical approach for Virtualised Authentica-
tion, Authorization and Accounting (V-AAA) in 5G is proposed by
Wong [36]. However, V-AAA is limited to authorization and authen-
tication of subscribers and tenants of a network rather than SLA
monitoring. Operators measure QoS of their network using receipts
generated by sample packets. Some operators may give sampled
packets a preferential treatment, and a packet sampling algorithm
to prevent such "prioritization attacks" is proposed by[28]. Further
work in path quality monitoring is carried out by [18] and verifiable
network performance is discussed in Network Confession [11].

Smart Contracts in Telecommunications: Our architecture
advocates the use of smart contracts to provision network resources
just-in-time. However, several factors need to be borne in mind.
Smart contracts are software programs prone to errors [27] and
are susceptible to attacks [12]. Formal verification [14] and anal-
ysis of safety [23] may be advisable as this is being applied to
mission-critical applications. A simplemethod to program a privacy-
preserving smart contracts is proposed by [24].

Network Slicing: Network Slicing [17] is a key component of
contemporary 5G and beyond mobile architectures. Slice Orchestra-
tion in 5G through blockchains is proposed by [13], but their work
is limited to conceptualising blockchain for slice creation, which is
a modification of [33]. Our work expands beyond that to support
mission-critical applications. Using network switches for chaining
NFs and optimally forming Network Function Blocks, to avoid con-
flicts and minimise the cost of network policy, is discussed by [15],
but they don’t address the significant issue of ensuring accountabil-
ity. Performance Contracts, a library to predict the performance of
NFs, are introduced in [21]. [25] has proposed a heuristic algorithm
to solve the problem of delay guarantees in real-time systems.

Dynamic, automated, and on-demand resource allocation in net-
work slicing is discussed by [33] using signal-based methods and
introduces a centralised entity called theNetwork Slice Broker which
looks after operations such as resource assignment and admission
control. A comprehensive structure of end-to-end SLA for 5G Net-
works, along with important metrics, is proposed by[20]. But this
study is limited to the structure of the SLA. Network slicing pol-
icy enforcement between different Mobile Virtual Network Opera-
tors(MVNOs) and mechanisms to minimise interference between
them is discussed in [16].

3 AJIT ARCHITECTURE
In this section, we present AJIT, our framework for Accountable
Just-in-Time allocation of network resources to support guaran-
teed levels of service that can dynamically change in fine-grained,
context-specific ways and hold over short time windows, or in spe-
cific locations. Our architecture is built on three pillars: (i) Billing
and accountability, which is achieved through smart contracts, (ii)
resource reservation, which is achieved through network slicing, and

AJIT MobiArch’20, September 21, 2020, London, United Kingdom

(iii) tamper-proof monitoring and housekeeping for dispute resolution,
which is achieved through code running in a secure enclave. We
describe each of these in turn:

3.1 Billing and accountability through smart
contracts

A novel concept that enables our dynamic fine-grained switching
among different service levels is the notion of very short duration
service agreements between the customer and network operators.
In order to quickly execute and reach such agreements, we propose
to use smart contracts, which are essentially short immutable
(and potentially verified [14]) programs executing on a Distributed
Ledger Technology (DLT).

Coding service agreements as smart contacts allows SLAs to
inherit the classic properties of smart contracts: (i) Transparency
– any party can access the service agreement logic and read its
past activation history. This provides monitorability [34]. (ii) Im-
mutability – once a JIT Contract is deployed, its logic can not be
changed, this prevents any interested party from tampering with it,
and (iii)Automation – the agreement execution (i.e., enforcement)
is beyond the control of any interested party, i.e., they can only
affect it as specified by its immutable logic [30].

3.1.1 Permissioned Distributed Ledgers. A typical base sta-
tion may need to support several thousand smart contract transac-
tions per hour from customers [22]. Therefore, we advocate using
a particular class of DLTs called Permissioned Distributed Ledgers
(PDLs) [3]. Commercially available PDLs such as Hyperledger Fabric
can support this volume of transactions [19], in contrast with the
more common permissionless ledgers such as the one used by the bit-
coin blockchain (which supports on the order of tens of transactions
per second [31]).

The characteristic of PDLs is that they aremanaged by authorized
members only, i.e., only recognised entities are allowed to update
the shared distributed state. This allows to pinpoint any consensus
misbehaviour to the correct perpetrator quickly. In our proposal,
the PDL is managed by a consortium of participants comprising
the different telecom operators of a country. Operators advertise
various types of services as separate smart contracts. A customer
buys a particular a limited fine-grained service (for a short duration,
a specific location, and perhaps only to connect to specific other
endpoints) by executing a smart contract from a given operator.
This transaction is recorded in the PDL, binding the customer to
make the requisite payment and the operator to the service level.
Whether the operator can provide the service level is monitored
throughout the duration of the contract, as detailed in Section 3.3.
Failure to adhere to the SLA may result in penalties that can be
automatically imposed through the smart contract, or with an audit
that takes place at a later date.

3.1.2 Participants’ roles. We note that even in a PDL, the state
updates are still agreed upon through a distributed consensus al-
gorithm, so the members need not trust each other and may still
compete with each other [37]. However, PDLs are still susceptible
to majority attacks wherein the majority of parties (often 50%+1
or 33%+1 depending on the consensus algorithm employed) can

collude to influence the ledger. Therefore, a set of chosen regu-
latory authorities (e.g., FCC in the US, or Ofcom in the UK) are
employed to provide oversight through consensus level access. The
participants of the PDL are discussed below:

Operators act as validator nodes, i.e., are responsible for updating
the ledger by executing transactions (e.g., calls to JIT Contracts)
received by both operators and customers. They have read/write
access to the ledger, and are in charge of creating and deploying new
JIT Contracts. We assume the network operators to be competing
with each other, so their cooperation on the PDL management
is achieved algorithmically, by them taking part in a distributed
consensus protocol; there is no trust required between them.

Customers send requests to execute JIT Contracts. Customers
only have read access to the PDL, i.e., they do not take part in the
consensus protocol tomaintain it, but they can still affect the state of
the PDL by submitting smart contract execution transactions, which
may then lead to the recording of new SLAs, and after the service
is delivered, will trigger payments from customers to operators.

Regulatory authorities are introduced as trustworthy entities on
the consensus layer of the PDL. By taking part in the distributed
consensus protocol, they can detect anomalous or fraudulent be-
haviour from the operators and cartel forming among operator
coalitions. Note that regulatory authorities are not in charge of
managing the system. Instead, they only act as “fall back” watcher
nodes in case of disputes or misbehaviour. As such, they are not a
Trusted-Third Party (TTP), and control still resides with operators.

3.2 Real-time Resource allocation with
network slices

Network Slicing [32] is a mechanism that operators can use to
provide isolation between different kinds of traffic, and reserve
resources to provide different levels of service to different users.
A user is allocated a particular slice based on their required type
of service and isolation level. For example, a platoon of cars can
get a network slice with very low-latency and high bandwidth.
It is also possible that a user is allocated different slices, which
raises questions of SLA Management[20]. These network slices are
created with the chaining of NFs, which should be programmable
to support today’s service demands[15].

Numerous solutions have been proposed to create and assign
users to network slices in near-real-time. For example, operators
may migrate previously allocated resources with subsecond latency
through primitives such as VM Fork [26]. Nour et al. [29] propose to
create end-to-end network slices by stitching together “sub slices”,
with each sub-slice representing a resource or set of resources from
particular “technological domains” (e.g., radio, compute resource,
transport protocol, etc.). Their simulations indicate that this stitch-
ing approach can lead to network slices creation time on the order
of a few seconds.

3.2.1 Just-in-Time Network Slicing. In our architecture, the
slice creation starts with the execution of the smart contract when
users request services. After the validation of PDL nodes, the respec-
tive smart contract is executed, and resources are assigned through
a JIT- Controller (Figure 1). The controller maintains an internal
database, which keeps track of the available resources and NFs, and
their respective path metrics, which will be needed to honour a

MobiArch’20, September 21, 2020, London, United Kingdom Faisal, et al.

Figure 1: JIT-Controller creates network slices through con-
sultation with the internal Database

particular SLA. With every incoming service request, the controller
consults the database and stitches an end-to-end network slice
from available resources that can satisfy the requested SLA. If such
a slice cannot be created, this is communicated back to the PDL,
nullifying the smart contract. Once the slice creation is confirmed
with the smart contract, the resources and network functions used
are marked as “reserved” or “in-use” within the database for the
duration of the contract.

3.3 Tamper-proof monitoring with
housekeeping code in secure enclaves

The difficulty in providing reliable service level measurements is
that the two participating entities, the customer and operator, do
not trust each other. Each has an incentive in cheating with their re-
ported measurements: the customer may unduly claim SLA breach
compensations (eg., by claiming that packets were delivered late
or not at all), whereas the operator may pretend to satisfy an SLA,
while actually providing lower levels of service, hence charging the
customer an unfair premium.

To solve the above problem, when a dynamic fine-grained SLA
is instantiated through a smart contract (as detailed in Section 3.1),
the funds of the customer are kept in escrow by the contract. These
funds are released when the operator produces an SLA receipt from
the customer. However, to ensure that the customer does not cheat
in the SLA receipts, the receipts are generated by code authored by
the operator but run on customer premises within a trusted enclave.
More precisely, an enclave resides on the customer device and is
able to run code that cannot be tampered with by the customer and
is therefore trusted by the operators. Similarly, we deploy an edge
monitor on the operator base stations, i.e., a software component
charged with interacting with the enclaves in monitoring the SLA.

3.3.1 Fine-grained SLA Monitoring. The SLA monitoring pro-
ceeds on both sides by dividing the service agreement’s duration
into small epochs over which SLA should be maintained. The edge
monitor and its counterpart on the customer’s enclave do the house-
keeping to keep track of the level of service provided by the operator
during that epoch (e.g., by counting the number of packets that
successfully cross the boundary from operator to customer during
the epoch, from which the bandwidth provided to the customer
can be calculated). From this housekeeping tally, an SLA receipt is
generated for the epoch on the edge monitor and its counterpart in
the customer’s enclave.

At the beginning of each epoch, the customer may be required by
the operator to provide it with a signed version of the SLA receipt
from the previous epoch, for service to be continued. Thus, the
customer cannot cheat by discarding the receipts produced by the
secure enclave. Within the ambit of the smart contract, the operator
claims payment of funds held in escrow by producing these SLA
receipts. Note that the operator cannot simply claim payment with
the copy of the SLA receipt generated on the operator’s base station,
because this has not been signed by the customer. Note also that
because the operator generates its copies of the SLA receipts, the
operator can detect and stop service if the customer cheats by giving
the operator a fake SLA receipt (e.g., by replaying an old receipt).

One issue with the above strategy is that PDL transactions are
typically much slower than the line rates that need to be supported
in mobile networks, and therefore payments cannot be generated
at line rate. However, because the PDL guarantees the escrow, the
payments can happen at any later time. Indeed, for higher efficiency,
a single cumulative settlement for all epochs can happen after the
flow has ended (the operator still checks the customer-signed SLA
receipts with its own copies at the end of each epoch, to ensure that
it is not being cheated mid-flow). Finally, we observe that some QoS
measures may need information from multiple edge monitors. For
example, consider two connected cars communicating with each
other via the operator’s network. In order to verify that the latency
experienced by packets that enter the operator’s network from one
car (say car1) and exit to the other car (car2) is below a particular
bound, we will need SLA receipts from the boundary point between
the network operator and car1, as well as the network boundary
between the operator and car2.

4 EVALUATION
In this section, we evaluate a key claim of our architecture – that
network resources can be allocated “just in time”. In particular, for
a customer to request a new type of service with new guarantees of
service levels, two steps need to be resolved: First, the customer has
to invoke a smart contract, which then needs to be executed on the
underlying distributed ledger technology. Second, a new network
slice has to be stitched together from available resources to provide
guaranteed service levels.

4.1 Profiling Smart Contract Delays
To study JIT Contract set up latency we have chosen to use smart
contracts written in Solidity [5] and deployed on Ethereum’s Rop-
sten testnet [4]. We have chosen Ethereum as it is the most popular
smart contract-enabling protocol. Our system is suitable to be de-
ployed on a PDL since all validators are known. As such, the actual
system implementation would be deployed in a fine-tuned custom
implementation, and the results obtained below on a public test
blockchain should be considered approximate upper bounds on the
delays incurred by smart contracts.

Each operator may implement a JIT Contract as arbitrarily com-
plex as theywish. However, all JIT Contracts accepted by consumers
should reflect, at least, the service activation logic expressed in Sec-
tion 3. During our analysis, we consider a smart contract in Solidity
implementing an example JIT Contract providing the main activa-
tion logic common to all JIT Contracts, i.e., from service activation

AJIT MobiArch’20, September 21, 2020, London, United Kingdom

Figure 2: Cumulative Distribution Functions (CDFs) of De-
ployment (left) and activation (right) function invocation la-
tency of the reference JIT Contract showing the mean, me-
dian and 90th percentile latency.

to the SLA receipt. We measure the time to deploy 100 clones of
our reference JIT Contract and execute once the activate function
for each of them. Note that activate is called by a customer, and it
locks the agreed payment, notifies the owner to start providing the
agreed service, and starts SLA monitoring.

The results are shown in Figure 2. The mean deployment time
obtained is 18.101 seconds, with a standard deviation of 14.290 sec-
onds. Note that Ropsten consensus wait imposes that transactions
take 14 seconds on average to be accepted. So our results are not far
from the achievable optimum. Moreover, each contract is deployed
only once and can be deployed well in advance by the operator.
Activate times are, instead, crucial to achieving Just-in-Time per-
formances. The activate function invocation times are a little lower
than deployment times, with a mean of 16.892 seconds and standard
deviation of 11.943 seconds, but still under one minute on average.

.

4.2 Profiling resource reservation delays
Resources are reserved by creating or stitching together a network
slice [29] by chaining appropriate network functions (NFs). As
mentioned in Section 3.2, this requires checking with an internal
database for available resources and NFs, commissioning them to
the slice, and marking the resources as “reserved” or “in-use” within
the database. Our evaluations are done in Mininet [2] and Open
vSwitch [1]. To mimic a typical operator’s network topology, NFs
are switches arranged in a tree topology (with Core, Aggregation
and Edge layers), with users attaching at the leaves. An explicitly
designed Just-in-Time Controller controls the database and reserves
the slices. As a preliminary back-of-the-envelop analysis, we sub-
mitted 70 user requests to the controller under varied packet loss
rates. Figure 3 shows the slice creation latencies, suggesting that a
satisfactory chain of NFs can be created quickly.

5 DISCUSSION
This paper considered an emerging class of mission critical appli-
cations such as remote surgery and connected cars, which require
stringent service level agreements or SLAs, and a fine-grained as-
signment of liabilities in case of failures. Furthermore, to make it
affordable, operators need to find ways to allow customers to obtain
these guarantees only during short critical periods flexibly. Equally,
to avoid liabilities and penalties, operators should also have the

Figure 3: CDF of slice creation latency.

freedom to commit to strong SLAs only when they can guarantee
the availability of resources.

To address these problems, we proposed an end-to-end archi-
tecture AJIT for Accountable Just-in-Time allocation of network
resources through smart contracts. We believe that radical changes
are inevitable in the current contract design to make them ready
for future service requirements, and most important among them is
to be able to get network services at the finest possible granularity.
In a conversation with the UK’s major telecom operator, we under-
stood that the current industry standard slice creation time could
be up to a few minutes, depending on the size of the geographical
area spanned by a slice. Thus, “real-time” requests from applica-
tions need to keep such constraints in mind, notwithstanding the
previous research [29] and our simulations.

We proposed a solution for assigning liability based on SLA
receipts. The presence or absence of signed SLA receipts can be
used both for payment and for audting the network operator’s
performance at a later date for legal reasons. However, we note
that the operator relies on the configuration of several hardware
and software equipment in different network segments (e.g., ra-
dio access, transport, core). Most of the involved processes still
depend on specific vendor’s implementation or support, although
standardisation efforts are helping their harmonization [6, 7]. Thus
it may be difficult to understand whether and how blame can be
split between the operator (due to configuration issues) and the
vendor whose equipment is being used.

Our work marks the beginning of an era for automated and
accountable resource allocation approaches, in which all partners
can work with justice, honesty, and trust. We are evaluating our
architecture with several strategies to optimize resource allocation
latency. In the future, we also wish to extend this work to address
the pricing strategies and benefits the operator and customer can
achieve through this. Maintaining SLAs in smart contracts also
achieves the orthogonal benefit of enabling operators to do business
with peers/suppliers (such as vendors and other operators) and
customers in an untrusted environment. This enables automation
in billing, QoS monitoring, and compensation.

MobiArch’20, September 21, 2020, London, United Kingdom Faisal, et al.

REFERENCES
[1] 2016. Open vSwitch. Retrieved from https://www.openvswitch.org/. Accessed

on: 01 June 2020.
[2] 2018. Mininet. Retrieved from http://mininet.org/. Accessed on: 01 June 2020.
[3] 2020. Permissioned Distributed Ledgers. Retrieved from https://bit.ly/36XroXz.

on: 01st June 2020.
[4] 2020. Ropsten Testnet. Retrieved from https://ropsten.etherscan.io/. Accessed

on: 01 June 2020.
[5] 2020. Solidity Language. Retrieved from https://bit.ly/2BAbred. Accessed on: 01

June 2020.
[6] 3GPP. 2016. Service requirements for the 5G system. Technical Specification (TS)

22.261. 3rd Generation Partnership Project (3GPP). https://bit.ly/30eq4ya
[7] 3GPP. 2018. Management and orchestration; 5G Network Resource Model (NRM);

Stage 2 and stage 3. Technical Specification (TS) 28.541. 3rd Generation Partner-
ship Project (3GPP). https://bit.ly/2Y9xRdQ

[8] David G Andersen, et al. 2008. Accountable internet protocol (aip). In ACM
SIGCOMM 2008 conference on Data communication. 339–350.

[9] Katerina Argyraki, et al. 2004. Providing packet obituaries. In ACM HotNets-III.
[10] Katerina Argyraki, et al. 2007. Loss and delay accountability for the Internet. In

IEEE ICNP. 194–205.
[11] Katerina Argyraki, et al. 2010. Verifiable network-performance measurements.

In Proceedings of the 6th International COnference. 1–12.
[12] Nicola Atzei, et al. 2016. A survey of attacks on Ethereum smart contracts. IACR

Cryptology ePrint archive (2016).
[13] Jere Backman, et al. 2017. Blockchain network slice broker in 5G: Slice leasing in

factory of the future use case. In IEEE IoTs Business Models, Users, and Networks.
[14] Karthikeyan Bhargavan, et al. 2016. Formal verification of smart contracts: Short

paper. In Proceedings of the 2016 ACM PLAS. 91–96.
[15] Lin Cui, et al. 2018. Enabling heterogeneous network function chaining. IEEE

(TPDS) 30, 4 (2018), 842–854.
[16] Salvatore D’Oro, et al. 2019. The slice is served: Enforcing radio access network

slicing in virtualized 5G systems. In IEEE INFOCOM. 442–450.
[17] Xenofon Foukas, et al. 2017. Network slicing in 5G: Survey and challenges. IEEE

CommMag 55, 5 (2017), 94–100.
[18] Sharon Goldberg, et al. 2008. Path-quality monitoring in the presence of adver-

saries. ACM SIGMETRICS 36, 1 (2008), 193–204.

[19] Christian Gorenflo, et al. 2019. Fastfabric: Scaling hyperledger fabric to 20,000
transactions per second. In ICBC. IEEE, 455–463.

[20] Mohammad Asif Habibi, et al. 2018. The structure of service level agreement of
slice-based 5G network. https://arxiv.org/pdf/1806.10426.pdf (2018).

[21] Rishabh Iyer, et al. 2019. Performance contracts for software network functions.
In 16th USENIX (NSDI). 517–530.

[22] Olle Järv, et al. 2012. Mobile phones in a traffic flow: a geographical perspective
to evening rush hour traffic analysis using call detail records. PloS one 7, 11
(2012).

[23] Sukrit Kalra, et al. 2018. ZEUS: Analyzing Safety of Smart Contracts.. In NDSS.
[24] Ahmed Kosba, et al. 2016. Hawk: The Blockchain Model of Cryptography and

Privacy-Preserving Smart Contracts. IEEE S&P (2016).
[25] Rakesh Kumar, et al. 2017. End-to-end network delay guarantees for real-time

systems using sdn. In 2017 IEEE RTSS. 231–242.
[26] Horacio Andrés Lagar-Cavilla, et al. 2009. SnowFlock: rapid virtual machine

cloning for cloud computing. In ACM EuroSys. 1–12.
[27] Loi Luu, et al. 2016. Making smart contracts smarter. In ACM SIGSAC 2016. ACM.
[28] Pavlos Nikolopoulos, et al. 2019. Retroactive Packet Sampling for Traffic Receipts.

ACM POMACS 3, 1, 1–39.
[29] Boubakr Nour, et al. 2019. A blockchain-based network slice broker for 5G

services. IEEE Networking Letters 1, 3 (2019), 99–102.
[30] Adrian Paschke et al. 2006. A categorization scheme for SLA metrics. In Proc.

Service-Oriented Electronic Commerce. Gesellschaft für Informatik eV.
[31] Joseph Poon et al. 2016. The bitcoin lightning network: Scalable off-chain instant

payments.
[32] Peter Rost, et al. 2017. Network slicing to enable scalability and flexibility in 5G

mobile networks. IEEE Communications magazine 55, 5 (2017), 72–79.
[33] Konstantinos Samdanis, et al. 2016. From network sharing to multi-tenancy: The

5G network slice broker. IEEE CommMag 54, 7 (2016).
[34] James Skene, et al. 2007. The Monitorability of Service-Level Agreements for

Application-Service Provision. In WOSP. 3–14.
[35] Vladimir Vukadinovic, et al. 2018. 3GPP C-V2X and IEEE 802.11 p for Vehicle-to-

Vehicle communications in highway platooning scenarios. Ad Hoc Networks 74
(2018), 17–29.

[36] Stan Wong, et al. 2017. Virtualized authentication, authorization and accounting
(V-AAA) in 5G networks. In IEEE CSCN. IEEE, 175–180.

[37] Karl Wüst et al. 2018. Do you need a blockchain?. In CVCBT(2018). IEEE, 45–54.

https://www.openvswitch.org/
http://mininet.org/
https://bit.ly/36XroXz
https://ropsten.etherscan.io/
https://bit.ly/2BAbred
https://bit.ly/30eq4ya
https://bit.ly/2Y9xRdQ

	Abstract
	1 Introduction
	2 Related Work
	3 AJIT Architecture
	3.1 Billing and accountability through smart contracts
	3.2 Real-time Resource allocation with network slices
	3.3 Tamper-proof monitoring with housekeeping code in secure enclaves

	4 Evaluation
	4.1 Profiling Smart Contract Delays
	4.2 Profiling resource reservation delays

	5 Discussion
	References

