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Service liability interconnections among globally networked IT- and IoT-driven service organizations create
potential channels for cascading service disruptions worth billions of dollars, due to modern cyber-crimes
such as DDoS, APT, and ransomware attacks. A natural question that arises in this context is: What is the

likelihood of a cyber-blackout?, where the latter term is defined as the probability that all (or a major sub-
set of) organizations in a service chain become dysfunctional in a certain manner due to a cyber-attack at
some or all points in the chain. The answer to this question has major implications to risk management
businesses such as cyber-insurance when it comes to designing policies by risk-averse insurers for providing
coverage to clients in the aftermath of such catastrophic network events. In this article, we investigate this
question in general as a function of service chain networks and different cyber-loss distribution types. We
show somewhat surprisingly (and discuss the potential practical implications) that, following a cyber-attack,
the effect of (a) a network interconnection topology and (b) a wide range of loss distributions on the probabil-
ity of a cyber-blackout and the increase in total service-related monetary losses across all organizations are
mostly very small. The primary rationale behind these results are attributed to degrees of heterogeneity in
the revenue base among organizations and the Increasing Failure Rate property of popular (i.i.d/non-i.i.d) loss
distributions, i.e., log-concave cyber-loss distributions. The result will enable risk-averse cyber-risk managers
to safely infer the impact of cyber-attacks in a worst-case network and distribution oblivious setting.
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1 INTRODUCTION

Global commerce is undergoing a profound digital transformation. As it becomes increasingly elec-
tronic and IoT-driven (courtesy of the upcoming 5G technology), critical exposures in this sector
are getting highly data-driven. As a result, the majority of modern business and economic risks are
subsequently becoming cyber in nature. More importantly such cyber-risks are often networked
and accumulate in a variety of different ways, thereby affecting many lines of business. As an ex-
ample, commercial companies in diverse sectors such as automobiles, electronics, energy, finance,
aerospace, and the like, and their mutual trading relationships are characterized by systemic net-
work linkages through major software providers (e.g., Oracle for DBMS support). A cyber-attack
(e.g., a zero-day attack) motivated by a vulnerability in a software version can have a catastrophic
cascading service disruption effect that might amount to net commercial losses worth billions of
dollars across the various service sectors. As well-documented commercial cyber-attack examples
in reality, the very recent Mirai DDoS (2016), NotPetya ransomware (2017), and WannaCry ran-
somware (2017) attacks caused havoc among firms in various industries across the globe, resulting
in huge financial losses for the firms due to their being deemed dysfunctional in providing service
to customers.

1.1 Research Motivation

In the wake of major targeted corporate cyber-attacks (e.g., attacks on Sony, Target) in the past half
decade, risk mitigation has become a top board-level concern across many organizations world-
wide. As a result, transfer based risk management products like cyber-insurance, which currently
has a rapidly growing market (Source - Betterley Annual Report 2015 [Betterley 2015], Advisen
Annual Report 2016) is a major go-to solution for the current corporate sector worldwide, in the
event of a cyber-attack. However, market surveys suggest that demand for cyber-insurance sig-
nificantly exceeds the capacity currently provided by the insurance industry. The primary reason
that most insurers give for being cautious about expanding capacity is the accumulation risk posed
by cyber-threats. The main fear among insurers here is that cyber-threats are inherently scalable
and systemic through their spread via network interconnectivity—a single malicious email gener-
ated by a botnet activity as part of a social engineering attack can result in an entire organization
becoming dysfunctional with respect to the service it provides, and in turn potentially affecting
business services of all other organizations that depend on it. In the event of cascading service dis-
ruptions due to a major cyber-attack, if all these organizations were to hold responsible their parent
organization(s) on which they depend on for providing services, it is quite likely that the insurance
company of a certain root organization would need to bear the responsibility of covering a huge
aggregate/accumulated risk of all or multiple organizations in the service chain [Millaire 2016].
Shouldering this responsibility clearly may not be aligned with satisfying the budget constraints
and profit requirements of most commercial risk-averse cyber-insurers, leave alone risk-tracking
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and risk-data availability challenges they might need to overcome to implement accumulative
coverage policies [Millaire 2016]. The above argument is still an unproven skepticism and the
current state of mind of cyber-insurance suppliers who are extremely risk-averse (primarily by
perception) and do not open up their complete coverage capacity to the client side, even if they
have spare coverage capacity. Our initial feel/conjecture is that such skepticism is unwanted for
in the timely necessary interests of the opening up of cyber-insurance markets, specially in the
wake of increasingly complex cyber-attacks, and is creating a big bottleneck in leveraging the ben-
efits of complete coverage capacity of insurers to their clients. In this paper we wish to conduct a
thorough mathematical investigation to judge the validity of such a skepticism.

Our Focus - Given a service chain network, our focus in this paper is to estimate in a manner
oblivious to a network and cyber-loss distribution in the worst case, the probability that all or a
major subset of organizations (network nodes) in the network become dysfunctional in a certain
manner (e.g., unable to provide cloud connectivity, inability to protect customer privacy, disruption
of energy services) to provide service in the event of a cyber-attack, a situation which we define
as a cyber-blackout (See Section 4.1 for details]. The requirement of a robust estimation environ-
ment that is oblivious to network and cyber-loss distributions can often arise for a large service
liability network setting, where cyber-risk managers may not have complete knowledge about the
topology and statistical cyber-attack distributions. A robust estimate of the probability of a cyber-
blackout is a necessary pre-requisite for considering the expansion of the service capacity of risk
management products such as cyber-insurance. In scenarios of cascading cyber-risks, the proba-
bility bounds will act as a valuable input to cyber-insurance firms to allocate optimal portfolios
among insurance and re-insurance investments. In addition to the above, we will also investi-
gate the practical implications of the likelihood and scale of cyber-blackouts on cyber-insurance
ecosystems of today and the near future.

1.2 Research Contributions

We make the following research contributions in this article.

—We design a graph-based model of service obligations, GSOM, between organizations in a
service chain network. Our model specifies a set of nodes that represent service organiza-
tions together with the edges that represent service liability relationships between them.
In the event of a cyber-attack, given the values of losses (either deterministic or stochastic)
at the nodes in the network, GSOM computes via solving a fixed-point problem, the vector
of service valuations that clears the network, and identifies the nodes in the chain that are
dysfunctional to provide service. GSOM is very useful for analyzing how service-related
losses propagate through an organizational service chain (see Section 3).

—Using GSOM, given the joint distribution of service-related losses across the network nodes
(organizations) in the event of a cyber-attack, we analyze the probability of contagion
that target organizations become dysfunctional due to a given organization somewhere in
the network becoming dysfunctional. In this regard, we answer two important questions:
(i) how likely it is that a given set of target organizations will become dysfunctional due to
contagion from a single source organization, as compared to the likelihood that they become
dysfunctional from direct losses to their own service-related assets that does not require
dependency on other nodes?, and (ii) how much does the underlying network of service
dependencies contribute to the increase in (a) the probability of dysfunction of target nodes
and (b) the corresponding expected value of losses, compared to a situation when there are
no network links, i.e., each organization completely relies on its own resources to provide
customer service? Our analysis is very useful for analyzing the chance of a cyber-blackout
event, and the effect of the underlying liability network topology and cyber-risk distribution
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on cascading node dysfunction parameters. As part of our results, we derive a general for-
mula that surprisingly shows that the probability of a cyber-blackout is larger mostly in
the absence of network connectivity than that in the presence of network connectivity, im-
plying that simple network spillover effects have a limited impact with respect to service
obligations between heterogeneous (in terms of monetary assets) organizations. We also
show that network spillover effects are surprisingly small mostly under a wide range of
joint distributions for plausible values of model parameters, regardless of the service de-
pendency network topology. (see Section 4 for details) - the rationale behind these results
being attributed to degrees of heterogeneity in organizational revenue bases, and the In-
creasing Failure Rate (IFR) property of popular (iid/non-iid) cyber-loss distributions (e.g.,
log-concave distributions).

—We expand the set of cyber-attack sources from a single node to multiple nodes, and study
the negative impact of simultaneous attacks on the entire network of organizations. Under
a wide range of general (iid/non-iid) loss distributions, we again surprisingly show that the
increase in total (summed over all nodes in the organizational network) value of service-
related losses due to network interconnections are mostly small, regardless of the network
structure (see Section 5 for details).

Our results will enable risk-averse cyber-risk managers to safely infer the impact of cyber-attacks
in a worst-case network and distribution oblivious setting.

2 MOTIVATION EXAMPLES FOR CYBER-BLACKOUT STUDY

In this section, we provide motivational background for our article by describing various well-
known attack scenarios that are capable of launching a cyber-blackout, thereby potentially pre-
senting an accumulative coverage setting for a cyber-insurance provider. We describe coverage
accumulation scenarios for seven key example processes [Inc. 2016] of cyber-loss in today’s dig-
ital age. The examples highlight how correlated cyber-losses could impact a portfolio of cyber-
insurance policies, and peep into the rationale of how a large number of accounts/organizations
might suffer systemic losses from a single underlying cause.

Cyber-Data Exfiltration. This process relates to the systemic release of confidential customer
records from many corporate enterprises (organizations). Some of the highest profile cyber-
incidents (e.g., the Sony, Target, and Equifax cyber-incidents [Risk Management Solutions, Inc.
2016]) have been data breaches1: the loss of confidential data from organizations that breach the
privacy of their customers, employees, clients, or counterparts. This has proved costly to the en-
terprise, resulting in notification costs, credit monitoring services, and compensation pay-outs to
all the individuals/organizations whose data was compromised, together with regulatory fines, re-
sponse and forensic costs, and sometimes substantial litigation costs. The total accumulative losses
to data breaches (both, first-party, and third-party losses faced from organizations in the service
chain complaining of privacy breach of their data) faced by individual organizations have been in-
strumental in driving the expansion of the cyber-insurance market, as companies seek protection
and risk partners in helping with response services.

Another burning example of cyber-data exfiltration might arise from the recently operative
General Data Protection Regulation (GDPR) [Krystlik 2017]. The key theme of GDPR, operative in
the EU from May 25th, is that each of us owns our own data. Any company (EU local/EU multina-
tional/companies worldwide operating with data of EU subjects including residents, citizens, and

1Types of data include personal identity information (PII), payment and credit card information (PCI), protected health
information (PHI), commercial confidential information (CCI), and intellectual property (IP).
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tourists) must therefore explicitly request permission to use any of our personal data, explaining
why it would like to do so, and for how long. If we so agree, we can later withdraw our permission
at any time. All of these rights must be provided to us by each company free of charge. One
consequence is that each company must know, and (dynamically) document, what information (if
any) they have about each individual. This may be a particular challenge for large, established cor-
porations, since data about individuals may be spread across different business units and multiple
databases, spreadsheets, off-site backup copies, or even paper archives, that would make synchro-
nous dynamic updating of data difficult. Thus, will open up avenues for cyber-data exfiltration
thereby leading to the aforementioned situation of accumulative losses due to a data breach.

Denial-of-Service Attack. This process relates to attacks that disable websites and disrupt on-
line business activity across multiple organizations. Denial-of-Service (DoS) and Distributed DoS
attacks are common methods of disrupting website business activities by bombarding them with
traffic (e.g., the Mirai botnet-induced DDoS attack [Whittaker 2016]). According to a Kaspersky
Lab report, 33% of organizations experienced a DoS attack on their websites in the past few years,
and one in eight of those attacks overwhelmed website resilience and rendered Internet services
unavailable [DeNisco Rayome 2017]. In April 2007, following a diplomatic row with Russia over a
Soviet war memorial, Estonia was subject to DDos attacks which caused temporary shut down of
infrastructure including everything from online banking and mobile phone networks to govern-
ment services and access to health care information [Wikipedia Contributors 2018]. For a given
organization, the cost of the business interruption caused by a DDoS attack of any particular dura-
tion is determined by the Internet dependency of the insured company, i.e., the amount of revenue
that would be lost per hour of Internet failure or connectivity loss. The capture of this information
makes it possible to assess the accumulative loss of revenue that a given insured organization may
be liable for (due to organizational dependencies in a service chain), from the potential for Internet
outage in general. As another line of recent target applications for DDoS attacks is the catastrophic
disruption of critical infrastructure services in the electricity, manufacturing, and transportation
sectors by APT-driven DDoS attack vectors. A well-known instance of such an attack type led to a
series of power blackouts in Ukraine [Greenberg 2017] in the last few years that caused significant
damage to people’s lives and business activities. Such scenarios also lead to accumulative coverage
for cyber-insurers.

Cloud Service Provider Failure. This process relates to the scenario when large number of or-
ganizations have business operations disrupted by losing cloud-based functionality in the event
of a major cloud service provider (CSP) suffering a service disruption due to a cyber-attack. The
digital economy is increasingly dependent on cloud services and a rapidly growing number of
companies make use of a CSP by outsourcing elements of their data storage, analytics, and infor-
mation technology functions. If a CSP were to fail (e.g., AWS outage (2011), Gmail outage (2010),
Microsoft Sidekick outage (2009) [Risk Management Solutions 2016]), then their customers would
suffer business losses and hold the CSP liable for the loss. A CSP failure could also be the source
of the exfiltration of confidential data records or claims for data and software loss if data files
were irrevocably deleted. This provides an accumulation issue for cyber-insurance where there is
potential for a large number of organizations (and their subsequent business clients in a service
chain) to make a claim for business interruption if a major provider of cloud services were to have
a lengthy outage or failure, from any cause. The systemic dimension of cyber-risk concerns the
triggering of large numbers of claims from companies that are CSP customers. The customers and
their insurers may attempt to recover their loss payouts from the CSP (and the insurer of the CSP).

Compromise of Financial Transactions. This process relates to theft of large sums in cyber-
attacks on multiple enterprises (organizations) that carry out financial transactions. Insurers
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offer coverage to the financial services sector to cover losses that they might suffer from cyber-
attacks, or computer based fraud, theft, or disruption occurring from compromising payment
systems or technologies for managing financial transactions. Criminals have always targeted the
money held in financial institutions, and physical bank robbery has given way to cyber-crime
as the preferred technique (e.g., Carbanak APT Attack (2013–2015), Drinkman and Kalinin Attack

(2013) [Risk Management Solutions, Inc. 2016]). Although a very large number of companies
of all different types carry out financial transactions, ranging from retail to e-commerce, the
transaction systems that carry the financial flows are the specific liabilities of financial transaction
companies. The potential for widespread and systemic claims across all the different sectors
of the economy from subverting payments after the point of sale are constrained by the legal
liabilities being confined to the financial services companies operating the payment transfers.
Thus, transaction risk is mostly aggregated in banking and payment management companies and
investment management systems.

Cyber-Extortion through Ransomware. This process relates to the event when many companies
are held to ransom by payoff seeking hackers disabling IT functionality. Cyber-extortion is a
rapidly growing area of organized cyber-crime using ransomware—malicious software that locks
up data or disrupts business until companies make a payoff. This has been a common method of
extorting individuals and small businesses for some years (e.g., LA Children’s Presbyterian Hospi-

tal Attack (2016) [Chinthapalli 2017], Bitfinex Attack (2017) [Morabito 2017]). Cyber-criminals are
increasingly scaling up their operations and using extortion more commonly against larger com-
panies as they gain confidence and technical expertise. In 2017, UK hospitals effectively shut down
and had to turn away non-emergency patients after WannaCrypt ransomware ransacked its net-
works [Hall 2017]. In the same year, Maersk, the world’s largest container shipping company, was
hit by NotPetya ransomware attack [Greenberg 2018]. Although ransomware that encrypts data
and locks computers is the most common type of extortion, companies may also be asked to make
payoffs to avert the threat of other cyber-attack types including denial-of-service attacks, data ex-
filtration breach, and sabotage to deny a company Internet or cloud services. Insurance repayment
for extortion is a common coverage in many standalone affirmative cyber-liability products in the
market, and around three-quarters of products offer this. Following from the previously mentioned
process examples, accumulative risk is something a cyber-insurance company needs to deal with
in the case of extortions.

Aggregate Losses due to Cyber-Warfare. Highly untraceable acts of modern cyber-warfare or
cyber-terrorism by nation states aimed to achieve political and corporate gains can lead to ag-
gregate losses incurred by organizations. On this note, as per a recent report by Bloomberg Busi-

nessweek [Robertson and Riley 2018], data center equipment run by Amazon Web Services and
Apple may have been subject to surveillance from the Chinese government via a tiny and virtu-
ally undetectable microchip inserted during the equipment manufacturing process. These illicit
microchips were capable of instructing the device in which they were embedded to communicate
with unauthorized computers located elsewhere on the Internet and preparing the device’s oper-
ating system to accept new code, and hence, enabling attackers to alter how the device functioned,
however they wanted. As an example, attackers could use this to steal intellectual property (IP)
of organizations and their service-providing clients, resulting in a situation of aggregate informa-
tion leak targeted at the host [Grobman 2018]. For the microchip case, Netflix (Entertainment),
BBC (News Broadcasting), Capital One Financial Corporation (Finance), Twitter (Social Media),
and various departments of the US government were clients of Amazon Web Services [Woot-
ton 2017; AWS Sales 2018]. Similarly, Best Buy (Consumer Electronics), Verizon Communications
(Telecommunications), AT&T (Telecommunications), Sprint (Telecommunications), T-Mobile U.S.
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(Telecommunications), were clients of Apple [Tracy 2016]. Here, Amazon and Apple may be held
liable by their clients for IP loss damages inflicted during such attacks, thereby contributing to
accumulative risk for a cyber-insurance company.

Aggregated Risk in IoT-Driven Smart Cities. In the near future, people are likely to populate their
homes, offices, and neighborhood with a dense network of potentially billions of tiny transmit-
ters and receivers which have ad-hoc networking abilities. These IoT devices can directly com-
municate amongst themselves, creating a new unintended communication medium that com-
pletely bypasses the traditional norms of communications such as telephony and the Internet.
In a recent work, Ronen et al. [2017] has successfully demonstrated that even though IoT devices
might be manufactured by popular and reputed firms deploying industry-standard cryptographic
techniques, they can be still misused by hackers to spread infectious malware from one IoT device
to all physically adjacent neighbors, causing city-wide disruptions which are very difficult to stop
and investigate Ronen et al. [2017]. In the case of “city” insurance agencies insuring their clients
in the future, aggregate cascading risks due to unavailability of service is something they might
have to deal with.

3 SYSTEM MODEL

In this section, we propose our graph-based model of service obligations, GSOM, between orga-
nizations in a service chain network that will be used in this article to investigate and analyze
cyber-blackout probabilities.

3.1 Basic Ingredients of GSOM

GSOM has four basic ingredients: (i) a set of n nodes N = {1, 2, . . . . ,n} characterizing organiza-
tions, (ii) an n × n liability matrix P̄ = (p̄i j ) where p̄i j ≥ 0 is the payment due from node i to node
j in the event of a claim made by j on i in the aftermath of a cyber-attack (e.g., an organization
claiming that due to CSP failure, it incurred a business loss worth a certain monetary amount)
with p̄ii = 0, (iii) �c = (c1, c2, . . . . , cn ) ϵ Rn

+, representing the vector of wealth/resource amount held

by each node i ∈ N , that is not yet subject to a cyber-attack, and (iv) �b = (b1,b2, . . . . ,bn ) ϵ Rn
+,

representing the vector of liability-free losses accrued by each node i ∈ N , in the aftermath
of a cyber-attack. We make the general assumption in this article that organizational claims,
wealth, and losses can be expressed monetarily in the event of a cyber-attack. Also note that the

liability matrix embeds the service chain network. For each node i ∈ N , the following relationship
holds:

wi = ci +
∑
j�i

p̄ji − p̄i , (1)

where wi is the net wealth of node i in the aftermath of a cyber-incident (given that the claim
payouts are appropriately meted out), and is unrestricted in sign, and p̄i is the net liability of
i . A negative value of wi denotes the inability of organization i to pay out claims made by
organizations liable on i . Observe that the net liability of i is expressed as

p̄i = bi +
∑
j�i

p̄i j .

Similarly, the net non-liability (assets) of organization i in the aftermath of a cyber-attack is given
by ci +

∑
j�i p̄ji . We illustrate the basic ingredients of the GSOM model via an example in the

Appendix.
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3.2 GSOM for Post-Attack Scene

Having discussed the basic elements of GSOM, our primary goal here is to build GSOM to handle
the case when resources that have not yet been hit by a cyber-attack are suddenly subject to a loss
that might trigger service disruption in a service chain network.

Let the amount ci for each node i be subject to a random shock or loss of value Xi in the event
of a cyber-attack, where Xi is a random variable taking values in the interval [0, ci ]. Thus, in the
aftermath of the attack, resource amount ci for node i is reduced to ci − xi , where xi is the instance
of Xi . Let F (x1,x2, . . . . ,xn ) be the joint cumulative function of these losses, that is central to ana-
lyzing the process of the spread of “organizational dysfunctionality” due to cyber-attacks. We note
that it is important that a necessary (but not sufficient and complete) component to estimating or
approximating F is the use of techniques like Monte Carlo simulation, percolation theory, or sta-
tistical mean field models, that popularly capture the spread of the infection (attack) vector (e.g.,
a virus, worm, bot) across a network, and is not the focus of our article. The interested reader is
referred to Lelarge and Bolot [2009], Lorenz et al. [2009], Ganesh et al. [2005], and Gao et al. [2012]
to get insights about some ways to mathematically evaluate this necessary component contribut-
ing to the value of F . In our work, we adopt a conservative (and hence more challenging) approach

of assuming general continuous forms of F for the purpose of analysis, without focusing our efforts
(via the use of the aforementioned necessary component) on finding/assuming specific continuous
forms of F that might be setting-dependent.

Define the relative liabilities matrix A = (ai j ) to be the n × n matrix with the entries:

ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p̄i j

p̄i
, if p̄i > 0

0, if p̄i = 0.

Thus, ai j is the proportion of organization i’s monetary obligations owed to organizations j in
the aftermath of cyber-attack. Here, ai j ≤ 1 for each i and subsequently matrix A is substochastic.

Given a loss realization vector �x = (x1, . . . . ,xn ) ≥ 0, our aim is to evaluate a vector that corre-
sponds to the payments that balance monetary assets and liabilities at each node (organization).
Based on the values in this vector, we will know whether an organization does have the ability
to handle liabilities from other organizations in the service chain, in the event the latter hold the
former liable for service disruptions due to a cyber-attack. In this article, we term the vector as a
clearing vector due to its relevance in balancing assets and liabilities. Mathematically, we represent
the clearing vector as �p (�x ) = {pi (�x )}; �p (�x ) ∈ Rn

+, and it is evaluated as the solution to the following
fixed-point equation:

pi (�x ) = p̄i ∧ ���
∑

j

pj (�x )aji + ci − xi
	
�+ , (2)

where the structure (·)+ above indicates that if the value inside the parenthesis is less than zero,
the value is zero. ∧ denotes the min operator, where �x ∧ �y = (min[xi ,yi ], . . . . ,min[xn ,yn]) The
solution to this equation, for each node i , is evaluated under a pro-rata allocation mechanism, i.e.,
the amount of unresolved liabilities at node i (when its net assets are less than its net liability)
is allocated in a proportional manner across its neighbors in the network induced by the liability
matrix. A pro-rata allocation is a standard allocation mechanism in financial debt theory [Eisen-
berg and Noe 2001; Fabozzi and Markowitz 2002; Rogers and Veraart 2013; Glasserman and Young
2016], and we adopt this standard in our article while allocating service liability debts. Given a
solution to (2), an organization i is said to be dysfunctional if pi (�x ) < p̄i (�x ) implying that its assets
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are less than the liability it owes to other organizations in the service chain network. We illustrate
the basic working of the GSOM model via an example in the Appendix.

3.3 Uniqueness of the Clearing Vector

Here, we investigate on the uniqueness of clearing vector obtained as the solution to the fixed
point equation in (2). In this regard, we have the following theorem.

Theorem 3.1. The clearing vector is unique if from every organizational node i there exists a chain

of positive obligations to some organizational node k that has positive obligations to itself.

Proof. It follows from [Eisenberg and Noe 2001] that a solution to (2) can be constructed iter-
atively as follows. Given a vector �x , define the mapping Φ : Rn

+ → Rn
+ as

Φi (�p) = p̄i ∧ ���
∑

j

pjaji + ci − xi
	
�+ . (3)

Starting with �p0 = p̄, let �p1 = Φ( �p0), �p2 = Φ( �p1), . . . , and so on. This iteration yields a monotone

decreasing sequence �p0 ≥ �p1 ≥ . . . . . .. Since it is bounded below, it has a limit p ′, and since Φ is
continuous p ′ satisfies (2). Hence it is a clearing vector. We now claim that p ′ is in fact the only
solution to (2). Suppose by way of contradiction that there is another clearing vector, say p ′′ � p ′.
Then, the net worth of all organizational nodes must be the same under the two vectors, i.e.,

p ′A + (c − x ) − p ′ = p ′′A + (c − x ) − p ′′.

Rearranging the terms, it follows that

(p ′′ − p ′)A = p ′′ − p ′; p ′′ − p � 0.

This means that the matrixA has Eigenvalue 1, which is impossible because under our assumption
A has spectral radius less than 1 - equivalent to the condition that, from every organizational
node i, there exists a chain of positive obligations to some organizational node k that has positive
obligations to itself. Thus, p ′ is the only solution to (2) and equivalently the clearing vector is
unique. �

Theorem Implication. The uniqueness of the clearing vector provides the benefit of practically
dealing with a single vector of liability payments, over the challenge of computationally searching
for multiple vectors. The assumption that matrixAhas a spectral radius less than 1 is quite practical
in the sense that a chain of obligations ending in an obligation loop around the same organization,
i.e., self-liability, is common in practice. As an example, the concept of self-liability could arise in
the context of the popular notion of self-insuring an organization, which is common in business
sectors.

4 ESTIMATING BLACKOUT CHANCE - SINGLE SOURCE CASE

In this section, we estimate the impact of the underlying service network topology the cyber-loss
distribution on the probability of a cascading cyber-blackout among a given set of organization
nodes when a single source node becomes dysfunctional to provide service in the aftermath of a
cyber-attack. This section is divided into three main parts: in the first part, we provide a non-trivial
general estimate of network impact on cyber-blackout probability irrespective of the loss distribu-
tion function; in the second part, we estimate the network impact on cyber-blackout probability
for a certain popular family of proportional (as a function of node revenue base) loss distribu-
tions, i.e., the Beta distribution; finally, we study the effect of the network impact on cascading
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Table 1. Table of Important Notations

N set of organizations
P̄ = (p̄i j ) payment matrix
−→c vector of wealth held by each organization i
−→
b vector of liability-free losses
P̄i net liability of i
Xi random variable representing loss to i on random shock
F (x1, . . . . xn ) joint cdf of losses at organization
A = (ai j ) relative liability matrix
−→
P (−→x ) clearing vector
βi proportion of i’s monetary liabilities to other nodes
λi leverage ratio of organization i w.r.t. ci−→
S vector of monetary shortages at organizations

cyber-blackout probability for various non-heavy tailed distributions. A collection of important
notations used in the article is provided in Table 1.

4.1 Analysis Setup

We first re-iterate the definition of the terms organizational dysfunction and cyber-blackout. As
previously mentioned, organizational dysfunction happens when a given organization is unable
to provide service to customers who rely on the former. Service could be of myriad forms, one
popular example being the ability to protect customer private information; another example of a
critical nature being the ability to provide non-interrupted energy to different customer segments
in the industry. Potential impact of organizational dysfunction could result in monetary business
losses, and loss of reputation resulting in loss of business. A cyber-blackout happens when individ-
ual organization dysfunction contributes to a cascade (due to a contagion effect) of organizational
dysfunctions, where each subsequent organization that became dysfunctional was relying on other
organizations that had already become dysfunctional. Note here that an organization could be a
single user as well. A practical example of a cyber-blackout is service disruption in a power grid
caused by a cyber-attack which in turn causes a cascade of power unavailability issues in different
sectors (e.g., manufacturing, transportation) of the industry, thereby leading to business disrup-
tions that cause commercial losses. In our work, we characterize dysfunctionality in a monetary

fashion by mapping it to the case when the monetary value of the available resources of an organi-

zation is less than what it owes other organizations (in the event of their unability to provide service)

which are liable on the former for service. More formally, given a solution to (2), an organization i
is said to be dysfunctional if pi (�x ) < p̄i (�x ) implying that its assets are less than the liability it owes
to other organizations in the service chain network.

In order to formulate our results, we need the following notation. Let D be the set of nodes that
we are interested in investigating whether they can go dysfunctional due to a cascading disrup-
tion effect resulting from a cyber-attack on a given source node i that made i dysfunctional. Let
βi =

p̄i

bi+p̄i
be the proportion of node i’s service-related monetary liabilities to other organizational

entities (nodes) in the system. We assume that βi > 0, i.e., each node has a non-zero service liability
external to itself. Recall thatwi > 0 is node i’s initial net worth in the aftermath of it being subject
to a cyber-incident, and ci represents the vector of wealth/resources held by node i that is not

yet subject to cyber-attack. We assume that wi < ci , since otherwise i could never go dysfunctional
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directly through losses in ci post a cyber-attack that affects ci . We define the ratio λi =
ci

wi
≥ 1 to be

the leverage ratio of i with respect to ci , and denotes the vulnerability of i - more the ci . In practice,
λi denotes the dependency of i on other nodes (organizations) in the network to maintain its QoS
with clients, and consequently serves as a vulnerability index of i . Thus, the greater the value of
λi (implying lower net worth), the higher the chances of it becoming dysfunctional after other
nodes in the system are cyber-attacked. A useful example to think of in this regard is a business
that rents virtual machines from a third-party cloud provider to generate a significant fraction of
its revenue, and the former gets dysfunctional via a DDoS attack. As a result, the net worth of the
cloud-driven business organization falls significantly, thereby increasing its leverage index.

4.2 Estimate of Blackout Probability

In this section, given D and a node i � D, we first derive a general estimate of the cyber-blackout
probability without taking into account specific forms of loss distribution functions. In this re-
gard, we are interested in two quantities: (i) a probability estimate that all organizations in D go

dysfunctional, and (ii) the mathematical condition which guarantees the impossibility of a cascading

effect from i to D. The first quantity has implications to a cyber-insurer in the insurance industry
who might be responsible for covering aggregate or accumulative risks of the organizations in D,
and the value of this quantity will help the insurer design and manage its portfolio mechanisms to
prevent it from going bankrupt. The second quantity has implications on individual organizations
regarding boosting their investments in cyber-security so much as to prevent them getting dys-
functional and subsequently saving face and money, and furthermore arresting a cascading service
disruption process.

We have the following proposition regarding a general bound-based estimate of the cyber-
blackout probability independent of the specific forms of loss distribution functions.

Proposition 4.1. Suppose that only organizational node i suffers a loss in its ci from a cyber-

attack, i.e., x j = 0, ∀j � i , and that no organization is dysfunctional prior to i suffering the loss. Fix a

set of nodes D not containing i . The probability that the loss causes all nodes in D to become dysfunc-

tional is upper bounded by

P ���Xi ≥ wi +
1

βi

∑
j ∈D

w j
	
� . (4)

A cascading effect from i to D is impossible if∑
j ∈D

w j

wi
> βi (λi − 1). (5)

Proof. Let D (�x ) ≡ D̄ be the dysfunctional set resulting from the loss vector X , whose coordi-
nates are all zero except Xi . By assumption, i causes other nodes to become dysfunctional; hence,
i itself must become dysfunctional, i.e., i ∈ D̄. To prove (4), it suffices to show that

βi (Xi −wi ) ≥
∑

j ∈D̄−{i }
w j ≥

∑
j ∈D

w j . (6)

The second inequality in (6) follows from the assumption that no nodes are in default before the
loss and the fact that we must have d ⊆ D̄ − {i} for all nodes in D to default. For the first inequality
in (6), define the shortage at organizational node j to be the difference sj = p̄j − pj . From (2), we
see that the vector of shortages �s satisfies

�s = (�sA −w + X )+ ∧ p̄.
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Using (3), we have sj > 0 for j ∈ D̄ and sj = 0 otherwise. We use a subscript D̄ as in sD̄ or AD̄ to
restrict a vector or matrix to the entries corresponding to nodes in the set D̄. Then, the vector of
shortages as the nodes of D̄ satisfies

sD̄ ≤ sD̄AD̄ −wD̄ + XD̄ , (7)

hence,
XD̄ −wD̄ ≥ sD̄ (ID̄ −AD̄ ). (8)

The vector sD̄ is strictly positive in every coordinate. From the definition of βj, we also know that
the jth row sum of ID̄ −AD̄ is at least 1 − βj . Hence,

sD̄ (ID̄ −AD̄ ) · 1D̄ ≥
∑
j ∈D̄

sj (1 − βj ) ≥ si (1 − βi ). (9)

From (7), it follows that the shortage at node i is at least as large as the initial amount by which i
becomes dysfunctional, that is,

si ≥ Xi −wi > 0. (10)

From (8)–(10), we can conclude that∑
j ∈D̄

(X j −w j ) ≥ si (1 − βi ) ≥ (Xi −wi ) (1 − βi ). (11)

This establishes (6) and the first statement of the proposition. The second statement follows from
the first by recalling that the loss to ci ’s cannot exceed their value, i.e., Xi < ci . Therefore, by (4),
the probability of contagion in the context of organizational dysfunctionality is zero if

ci ≤ wi +
1

βi

∑
j ∈D

w j .

Dividing through by wi, we see that this is equivalent to the condition∑
j ∈D

w j

wi
> βi (λi − 1),

which is the second statement of the proposition. Hence, we have proved Proposition 4.1. �

Proposition Implication. Note that the bounds in the theorem are completely general and do
not depend on the distribution of the losses, or on the network topology. The condition in (5) is
intuitive and states that dysfunction contagion from i to D is impossible if the total net worth
of the nodes in D is sufficiently large (could be made possible by making proper investments
in cyber-security) relative to the net worth of i weighted by (a) the exposure of the system to
organizational node i as measured by βi and (b) the vulnerability of i as measured by the leverage
ratio λi . More generally contagion will be weak if unless originating node is highly leveraged
and has a relative high proportion of obligations to other nodes (e.g., if originating node is an
organization like Amazon providing cloud services to multiple other organizations [Wootton 2017;
AWS Sales 2018]). A similar interpretation applies to (4).

Cyber-Insurance Perspective. In the context of cyber-insurance, the proposition implies that in-
surers should incentivize organizations (through appropriate contract design) to boost up their
cyber-hygiene so that an organization’s net worth (the denominator of the leverage term) is high.
This implies that even if individual node dependencies are high, each is secure enough to a thresh-
old that significantly dampens the chance of its revenue base to be shrink via a cyber-attack. The
incentive problem has been a challenging one in the cyber-insurance space, and one particular
solution direction for networks has recently been explored by Pal et al. [2017].
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Contagion vs Independent Losses. We now investigate results tying the probability of a cyber-
blackout through a contagion from a given organizational node i to a given subset D of nodes, to
the probability of the same under direct independent losses (e.g., losses incurred by organizations
due to cyber-attacks that take advantage of poor cyber-hygiene practices in the organizations)
experienced at the nodes. We say that the contagion effect with respect to organizational node dys-

function is weak if

P ���Xi ≥ wi +
1

βi

∑
j ∈D

w j
	
� ≤ P (Xi > wi )

∏
j ∈D

P (X j > w j ). (12)

The expression on the left bounds the probability that nodes in D become dysfunctional through
contagion from i , while the expression on the right is the probability (computed using the loss
distribution for individual nodes) that the same nodes become dysfunctional through independent
direct losses. The intuition for weak contagion is as follows: the RHS of the expression has the
product of events, which means we consider the case where all nodes in D and node i get dysfunc-
tional in an independent fashion. Thus, we have a sequence of ‘less than 1’ terms making the RHS
smaller and smaller, yet it never gets small enough to become smaller than the LHS, that repre-
sents the network contagion effect. It goes without saying that the inequality depends heavily on
wi and βi , and specific conditions in this regard are stated in the implications of Theorem 4.2 (see
later). Note that in practice the assumption of direct independent losses is somewhat unrealistic:
in practice one would expect the losses to different nodes be positively associated (correlated). In
that case, we observe a fortiori that the probability of organizational dysfunction is weak even if
the cyber-losses are positively correlated, and the above equation would hold here as well. That
is, P (Xi > wi )

∏
j ∈D P (X j > w j ) < P (Xi > wi ,X j > w j ,∀j ∈ D).We say that the contagion effect is

strong if

P ���Xi ≥ wi +
1

βi

∑
j ∈D

w j
	
� > P (Xi > wi )Πj ∈DP (X j > w j ). (13)

The intuition for a strong contagion effect is just the converse of that for a weak contagion
effect.

4.3 Distribution-Based Estimate of Cyber-Blackout Probability

Having provided a general estimate of the cyber-blackout probability, we now estimate this prob-
ability under the effect of a given loss distribution across different nodes in the organizational
network. Let us assume that the cyber-losses at a given organizational node i scales with the
portfolio ci of the organization. Based on recent data from Symantec [Symantec 2016], this is a
reasonable assumption to make irrespective of whether cyber-attackers target organizations big
or small. Let us also assume that the distribution of these relative losses, i.e., with respect to ci , is
the same for the nodes, and independent among the nodes (note that this does not imply absolute
losses are independent).

Then, there exists a distribution function H : [0, 1]→ [0, 1] such that

F (x1, . . . . . ,xn ) = Π1≤i≤nH

(
xi

ci

)
. (14)

Beta distributions provide a flexible standard family with which to model the distribution of rela-
tive losses that lie in the interval [0, 1], and generalizes other distributions that work with bounded
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intervals [Johnson et al. 1995]. We work with Beta densities of the form

hp,q =
yp−1 (1 − y)q−1

B (p,q)
, 0 ≤ y ≤ 1, p,q ≥ 1, (15)

where B (p,q) is a normalizing constant. Note that (15) is general enough to allow a mode any-
where in the unit interval. The subset with p = 1, q > 1 has a decreasing density and seems the
most realistic, whereas the subset with q = 1, p > 1 has an increasing density and could be consid-
ered “heavy-tailed” in the sense that it assigns greater probability to greater losses. We have the
following result regarding a distribution specific estimate of the cyber-blackout probability.

Theorem 4.2. Assume relative loss distributions across all organizational nodes are i.i.d. Beta dis-

tributed, and the net worth of every node is initially non-negative. Let D be a non-empty subset of

nodes and let i � D. Then, a contagion effect with respect to organizational dysfunction is impossible

if ∑
j ∈D

w j > wiβi (λi − 1), (16)

and is weak if ∑
j ∈D

w j ≥ wiβi

∑
j ∈D

λi − 1

λj
. (17)

Proof. Proposition 4.1 implies that contagion is weak from i to D if

P ���Xi ≥ wi +
1

βi

∑
j ∈D

w j
	
� ≤ P (Xi > wi )Πj ∈DP (X j > w j ). (18)

On the one hand, this certainly holds if wi +
1
βi

∑
j ∈D w j > ci , for then contagion is impossible. In

this case, we obtain, as in (5) ∑
j ∈D

w j

wi
> βi (λi − 1). (19)

Suppose, on the other hand, that
(
wi +

1
βi

∑
j ∈D w j

)
≤ ci . By assumption, the relative losses Xk

ck

are independent and beta distributed as in (15). In the uniform case p = q = 1, Equation (18) is
equivalent to [

1 −
(
wi

ci
+

1

βici

) ∑
j ∈D

w j

]
≤

(
1 − wi

ci

)
Πj ∈D

(
1 −

w j

c j

)
. (20)

We claim that (20) implies (18) for the full family of Beta distributions in (16). To see why, first
observe that the cumulative distribution Hp,q of hp,q satisfies

1 − Hp,q (y) = Hq,p (1 − y).

Hence, (18) holds if

Hq,p
���1 − wi

ci
− 1

βici

∑
j ∈D

w j
	
� ≤ Hq,p

(
1 − wi

ci

)
Πj ∈DHq,p

(
1 −

w j

c j

)
. (21)

But (21) follows from (20) because Beta distributions withp,q ≥ 1 have the submultiplicative prop-
erty

Hq,p (xy) ≤ Hq,p (x )Hq,p (y), x ,y ∈ [0, 1].
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It therefore suffices to establish (21), which is equivalent to

1

βici

∑
j ∈D

w j ≥
(
1 − wi

ci

) (
1 − Πj ∈D

(
1 −

w j

c j

))
. (22)

Given any real number θ j ∈ [0, 1], we have the inequality

Πj (1 − θ j ) ≥ 1 −
∑

j

θ j . (23)

Hence, a sufficient condition for (22) to hold is that

1

βici

∑
j ∈D

w j ≥
(
1 − wi

ci

) ∑
j ∈D

w j

c j
. (24)

After rearranging the terms and using the fact that λk =
ck

wk
for all k , we obtain (17). This concludes

the proof of Theorem 4.2. �

From the argument in (21), it is evident that the same result holds if the losses to each node j
are distributed with parameters pj ,qj in (15) with pi ≤ minj ∈D pj and qi ≥ maxj ∈D qj .

Theorem Intuition. As noted in Proposition 4.1, the condition in (16) states that the contagion
from i to D is impossible if the total net worth of the nodes in D is sufficiently large (could be made
possible by making proper investments in cyber-security) relative to the net worth of i weighted
by (a) the exposure of the system to organizational node i as measured by βi , and (b) the vul-
nerability of i as measured by the leverage ratio λi . The condition in (17) compares the total net
worth of D relative to that of i with the leverage ratio of i relative to that of the nodes in D. With
other parameters held constant, increasing the relative net worth of D (again via making higher
investments in security) makes contagion weaker in the sense that it strengthens the inequality;
increasing the leverage ratio of i relative to that of the nodes in D has the opposite effect because
there is higher potential (and impact) to target unattacked resources worth ci and also those whose
net worth is low. Importantly, the two effects are mediated by βi —a lower βi makes D vulnerable
to i and makes D less sensitive to the degree of leverage at i . Now recalling that λj =

c j

w j
, we can

write (17) in the following equivalent form:∑
j ∈D c jλ

−1
j∑

j ∈D λ−1
j

≥ ciβi (1 − λ−1
i ). (25)

Written this way, the condition states that contagion from i to D is weak if the average size of the
nodes in D weighted by their inverse leverage ratios is sufficiently large relative to i —evident as
a result of high net worth of nodes in D. On the right side of the inequality in (25), ciβi measures
the organizational system’s exposure to node i’s assets worth ci , and the factor (1 − λ−1

i ) is greater
when node i is more highly leveraged. Thus, inequality (25) is harder to satisfy, and D is more
vulnerable to contagion from i , if large (high asset) nodes in D are more highly leveraged, or if
node i is more highly leveraged.

Theorem Implications. A key implication to Theorem 4.2 is that without substantial node het-
erogeneity (see Corollary 4.4 for specific mathematical conditions), contagion with respect to or-
ganizational dysfunction will be weak, irrespective of the structure of the network induced by the
liability matrix (also validated experimentally on real and synthetic data in Section 6). More gen-
erally, from Proposition 2, contagion will be weak unless the originating node is highly leveraged
and has a relative high proportion of obligations to other nodes. Consequently, with respect to
node heterogeneity, the following result is immediately obvious.
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Corollary 4.3. Assume that all nodes i have the same value c for ci . Under the assumptions of

Theorem 3.1, contagion is weak from any node to any other set of nodes.

Proof. The result follows from the fact that βi (1 − λ−1
i ) < 1, and the fact that when ci = c , for

all i , (25) holds for all i and D. Thus, we have proved Corollary 4.3. �

The implication of this corollary is that organizational heterogeneity with respect to resources
characterized by ci ’s is a necessary condition (though not sufficient) for a cascading service dis-
ruption effect to take place. Since, in reality, organizations are heterogeneous, cyber-blackouts are

possible, though under certain conditions (see Corollary 4.4).
Now suppose that c1 ≥ c2 ≥ · · · ≥ cm , Since losses are proportional to ci , a loss to c1 maximizes

the contagion to other nodes. This fact is formalized via the following corollary:

Corollary 4.4. If c1 ≥ c2 ≥ · · · ≥ cm , then contagion from organizational node 1 to nodes 2,.....,m
is weak if c2 ≥ β1 (c1 −w1) and c j ≥ (c j−1 −w j−1), j = 2, . . . . ,m, strong otherwise. Contagion is im-

possible if c2 − cm +wm > β1 (c1 −w1).

Proof. The result directly follows from (20) and (22). �

The implications of this corollary are that the lower bounds for c j ensure that the potential
spillovers from other nodes cannot lead to the full set D of nodes into dysfunction regardless of

the liability network topology. This does not imply that the network structure has no effect on the
probability of contagion—it just showcases the fact that in quite a few situations the probability
of contagion with respect to organizational dysfunction will be lower than the probability of an
organization being rendered dysfunctional due to direct losses (see Section 6 for an experimental
validation).

Cyber-Insurance Perspectives. In the context of cyber-insurance, the implications of Proposition 2
carry over, in addition to Theorem 4.2 and the subsequent corollaries bolstering the future increase
in global cyber-insurance market valuation, as risk-averse insurers would not have to worry much
about strong contagion effects in selling cyber-insurance policies. In addition, the common knowl-
edge among organizations about inevitable node heterogeneity with respect to monetary assets,
will psychologically lead them to invest in cyber-insurance as well as security enhancing practices
due to a certain fear of risk cascading.

With respect to the scale of aggregate risk coverage burden on an insurance company, cyber-
blackouts may be quite unlikely if set D is large, which reduces the likelihood of an insurance
agency going bankrupt, and this implication holds irrespective of the underlying liability network
topology. When D is a small set of heterogeneous organizations, an insurance company is also
less likely to be bankrupt, even if some organizations in the set are large-sized and incur large
losses. Now as for the case of simultaneous independent direct losses on all of the organizations in
D which might positively contribute to cyber-blackout probability—in practice, this is a very low
probability event for large-sized D.

4.4 Extending the Distribution Space

A drawback with the Beta distribution is that the probability of ci going to zero in the aftermath
of a cyber-attack, is zero. This clearly may not be true in practice and we cannot rule out the
(potentially futuristic) scenario where the ci ’s could be wiped out due to a big cyber-hit—something
analogous to a cyber 9/11. In this section, we aim to extend our analysis by accounting for popular
loss distributions other than the Beta distribution, that do not suffer from the above-mentioned
drawback.

In order to capture the non-positive probability of ci ’s going to zero, we propose the following
model: Let X 0

i ≥ 0 be a primary loss (potentially unbounded in size) and let Xi = (ci ∧ X 0
i ) be the
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resulting loss to ci for organizational node i —i.e., we truncate the loss to put mass at ci thereby
setting up the way to assign positive probability to ci going to zero. Assume that the primary losses
have a joint distribution of the form:

F 0 (x0
1 , . . . . . . . ,x

0
n ) = Π1≤i≤nH

0

(
x0

i

ci

)
, (26)

whereH 0 is a distribution function on the non-negative real line. More specifically, we assume (for
now) that the primary losses are i.i.d. and that a given x0

i affects every unit of ci equally. A random
variable with distribution function G and density д is said to have an increasing failure rate (IFR)

distribution if д (x )
1−G (x ) is an increasing function of x . Given the assumption thatYi =

X 0
i

ci
are i.i.d.,Yi ’s

are IFRs. Other popular examples of IFR’s are normal, exponential, and uniform distributions; more
generally, all log-concave distributions. Our model showcases the IFR property common to multiple
popular distribution families and helps us extend results in the previous section to distributions
beyond the Beta distribution. We have the following result regarding a non-specific distributional,
i.e., IFR-distributed estimate of the cyber-blackout probability.

Theorem 4.5. Assume relative primary loss distributions across all organizational nodes are i.i.d.

IFR-distributed, and the net worth of every node is initially non-negative. Let D be a non-empty subset

of nodes and let i � D. Then, a contagion effect with respect to organizational dysfunction is impossible

if ∑
j ∈D

w j > wiβi (λi − 1), (27)

and is weak if ∑
j ∈D

w j ≥ wiβi

∑
j ∈D

λi

λj
. (28)

Proof. Through relabeling, we can assume that the source node for contagion is i = 1 and that
the infected nodes are D = {2, 3, . . . . ,m}. By Proposition 1, we know that contagion is weak from
1 to D if

P ���X1 > w1 +
1

β1

∑
2≤j≤m

w j
	
� ≤ Π1≤j≤mP (X j > w j ). (29)

Since X1 = c1 ∧ X 0
1 , the left-handed side is zero when w1 +

1
β1

∑
2≤j≤m w j > c1. Thus, contagion is

impossible if ∑
2≤j≤m

w j

w1
> β1 (λ1 − 1). (30)

Let us therefore assume thatw1 +
1
β1

∑
2≤j≤m w j ≤ c1. Define the random variables Yi =

X 0
i

ci
. Then,

the weak contagion from 1 to D holds if

P ���Y1 >
w1

c1
+

1

β1c1

∑
2≤j≤m

w j
	
� ≤ Π1≤j≤mP

(
X j >

w j

c j

)
, (31)

where the latter holds from the assumption that Yi are i.i.d. By assumption that Y1 is IFR, hence
we have from Barlow and Proschan [1975]

P (Y1 > s + t |Y1 > s ) ≤ P (Y1 > t ), ∀s, t ≥ 0.
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It follows that

P ���Y1 >
∑

1≤k≤m

wk

ck

	
� ≤ Π1≤j≤mP

(
X j >

w j

c j

)
. (32)

Together with (31), it shows that contagion from 1 to D is weak provided that

P ���Y1 >
w1

c1
+

1

β1c1

∑
2≤j≤m

w j
	
� ≤ P ���Y1 >

∑
1≤k≤m

wk

ck

	
� . (33)

This clearly holds if
w1

c1
+

1

β1c1

∑
2≤j≤m

w j ≥
∑

1≤k≤m

wk

ck
, (34)

which is equivalent to
1

βc1

∑
2≤j≤m

w j ≥
∑

2≤j≤m

w j

c j
=

∑
2≤j≤m

λ−1
j . (35)

Since c1 = λ1w1, we can rewrite (35) as∑
2≤j≤m

w j

w1
≥ βλ1

∑
2≤j≤m

λ−1
j . (36)

We have therefore shown that if contagion from 1 to D = {2, 3, . . . ,m} is possible at all, then
Equation (36) is a sufficient condition for weak contagion with respect to service dysfunctionality.
From (36), we see that a simple sufficient condition for weak contagion is c j ≥ β1c1, j = 2, . . . ,m,
and the condition

∑m
j=2w j > β1 (c1 −w1) make contagion impossible. Thus, we have proved The-

orem 4.5. �

Theorem Intuition and Implications. We have the following very powerful system implication as
a result of Theorem 4.5 and Corollary 4.4, given a single node i (that got hit by a cyber-attack) and
an organization set D —the conditions for weak contagion and the impossibility of contagion with

respect to organizational service dysfunction is the same irrespective of the loss distributions and the

underlying network topology, as long as the distributions satisfy the general IFR property. Thus, in a
sense, the specificity of loss distributions is “irrelevant” to the conditions necessary for a cyber-
blackout. The intuition is similar to that of Theorem 4.2. With respect to node heterogeneity, the
following result is immediately obvious from Theorem 4.5.

Corollary 4.6. Assume that all nodes i have the same value c for ci . Under the assumptions of

Theorem 4.2, contagion is weak from any node to any other set of nodes.

Proof. It is evident upon writing (36) as∑
j ∈D c jλ

−1
j∑

j ∈D λ−1
j

≥ βici .

Hence, we have proved Corollary 4.6. �

Cyber-Insurance Perspective. With respect to cyber-insurance, the implications of Theorem 4.5
are the same as those from Theorem 4.2.

Non-i.i.d Primary Losses. In the beginning of this section, we had assumed that primary losses
across organizational nodes are i.i.d. However, this assumption is conservative in practice. Here, we
provide the conditions for weak contagion for specific but practical loss variables characterized by
a Pareto-like or a heavy-tailed densities of the form P (Xi > x ) ≈ ax−μ for some positive constants
a and μ. First, we generate dependent random variables from independent random variables via
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a standard statistical procedure as follows: let Y1, . . . . ,Ym be independent random variables, each
distributed as tν —the Student t distribution with ν > 2 degrees of freedom. Let Ŷ1, . . . .Ŷm have a
standard multivariate Student t distribution with tν marginals. Clearly, Ŷj ’s are uncorrelated but

not independent. In order to make losses positive, we set X̃ j = Ỹj
2
, for each j, where X̃ j has a

Pareto-like tail.

Proposition 4.7. With dependent primary losses, X̃i ,

P ���X̃i >

m∑
j=1

w j
	
� ≤ P (X̃ j > w j , j = 1, . . . . . ,m),

for all w j ≥ 0, j = 1, 2, . . . . . ,m.

Proof. The proof follows via a direct application of Bound II for the F distribution (see Marshall
et al. [1974]). �

The proposition implies that even with heavy-tailed losses, we may find that service dysfunction
of a set of nodes through contagion originating from a single organizational node is less likely than
service dysfunction via direct losses to individual nodes, if the losses are dependent.

5 EXPANDING ATTACK SOURCE AND TARGET SETS

In the previous section, we studied the impact of the dysfunctionality of a single organizational
node on another target setD of organizational nodes. In this section, we study the impact of (multi-
ple) successful cyber-attacks on the entire organizational network. More specifically, we model our
goal as an estimate of the effect of the underlying liability network on the net losses in the overall
system due to (simultaneous) successful cyber-attacks on ci ’s of different organizational nodes i . In
this regard, we first need to form a measure of the total systemic impact of loss due to cyber-attack.
In this work, we shall take the systemic impact of a loss to be the total loss in value summed over
all organizational nodes in the network. Given a loss realization �x , the total reduction in resources
(assets) across all nodes in the network is∑

i

xi + S (�x ); S (�x ) =
∑

i

(p̄i − pi (�x )). (37)

The term
∑

i xi is the direct loss in value from reductions in liability payments to the i’s from
their external network environment. The term S (�x ) is the indirect loss in value from reductions
in liability payments by the nodes to other nodes as well to themselves (due to self-liability). An
overall measure of the riskiness of the network system is the expected loss in value, L, given by

L =

∫ ��
∑

i

xi + S (�x )	�dF (�x ). (38)

The question we wish to examine is what proportion of these losses can be attributed to network

connections between organizations?

5.1 Examination Setup

Let �x be a loss value (instance) due to a cyber-attack, and correspondingly let D = D (�x ) be the set
of nodes that goes dysfunctional given �x . Under our assumptions, this set is unique because the
clearing vector is unique. For notational simplicity, we suppress �x in the ensuing discussion. As in
the proof of Proposition 4.1, define the shortage in liability payments at organizational node i to
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be si = p̄i − pi , where �p is the clearing vector. By definition of D, we have

si =

{
> 0, ∀i ∈ D
= 0, ∀i � D

Also, as in part of Proposition 4.1, letAD be the |D | × |D |matrix obtained by restricting the relative
liabilities matrixA to D and let ID be the |D | × |D | identity matrix. Similarly, let�sD be the vector of
shortages si corresponding to the nodes inD, let �wd be the corresponding net worth vector defined
in (1), and let �xD be the corresponding vector of losses. The clearing condition in (3) implies the
following equation, provided si < p̄i (the condition that the net worth of any node is positive), for
all i:

�sDAD − (�wD − xD ) = �sD . (39)

Recall that AD is substochastic, and by assumption, there exists a chain of obligations from any
given node k to a node having strictly positive obligations to the itself. It follows that limk→∞Ak

D
=

0D ; hence, ID −AD is invertible and

[ID −AD ]−1 = ID +AD +A
2
D + . . . . . . . . (40)

From (39) and (40), we conclude that

�sD = (�xD −wD )[ID +AD +A
2
D + . . . . . . . .]. (41)

Given a loss instance �x with resulting dysfunctional organization set D = D (�x ), define the vector
u (�x ) ∈ Rn

+ such that

uD (�x ) = [ID +AD +A
2
D + . . . . . .] · 1D , ui (�x ) = 0, ∀i � D. (42)

Combining (37), (41), and (42) shows that the total losses for a given �x can be expressed as

L(�x ) =
∑

i

(xi ∧wi ) +
∑

i

(xi −wi )ui (�x ). (43)

The first term represents the direct losses to remaining resources at each organizational node, and
the second term represents the total shortage summed over all the nodes. The right side becomes
an upper bound on L(x ) if si = p̄i for some i ∈ D (�x ). We call the coefficient ui = ui (�x ) the depth

of organizational node i in D = D (x ). The rationale for this terminology is as follows: Consider
a Markov chain on D with transition matrix AD . For each i ∈ D, ui is the expected number of
periods before exiting D, starting from node i . Expression (42) shows that node depths measure

the amplification of losses due to interconnections among nodes in the dysfunctional set. We note
here that the concept of node depth is dual to the notion of eigenvector centrality (or eigenvector-
driven centrality measures) [Newman 2018]. To see the connection, let us restart the Markov chain
uniformly in D whenever it exits D. This modified chain has an ergodic distribution proportional
to 1D · [ID +AD +A

2
D + . . . . . . .] and its ergodic distribution measures the centrality of the nodes

in D. It then follows that node depth with respect to AD corresponds to centrality with respect to
the transpose of AD .

We can now bound the magnitude of the node depths in the dysfunctional set. We first define a
set D of nodes to be α-cohesive if every node in D has at least α of its liabilities to other nodes in D,
i.e.,

∑
j ∈D ai j ≥ α , for every i ∈ D [Morris 2000]. The cohesiveness of D is the maximum α , which

we denote by αD . As a lower bound for ui , it follows from (42) that

ui ≥
1

1 − αD
, ∀i ∈ D. (44)

Thus, the more cohesive the dysfunction set, the greater the depth of the nodes in that set and the

greater the amplification of the associated loss. We can also bound the node depths from above. Recall
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that βi is the proportion of i’s liability to other nodes in the network. Let βD = max{βi : i ∈ D}.
We obtain the upper bound assuming βD < 1 as follows:

ui ≤
1

1 − βD
, ∀i ∈ D. (45)

The bounds in (44) and (45) depend on the dysfunctional set D, which in turn depends on �x . A
uniform upper bound is given by

ui ≤
1

1 − β+ , ∀i ∈ D; β+ = max βi < 1. (46)

We are now in a position to compare the expected systemic losses in a given network of intercon-
nections, with the expected losses without such interconnections, in order to gauge the effect of
service disruption contagion in a network.

5.2 Comparing Expected Systemic Losses

Consider the following system setting as already discussed in Section 3. We fix a set of n orga-

nizational nodes, N = {1, 2, . . . . ,N }, vectors �c , and �b as before. Assume that the net worth wi of
node i is non-negative before a loss due to a cyber-attack is realized, and that liability network
interconnections are determined via the n × n matrix P̄ . Let us now have another system setting
where we eliminate all connections between nodes, i.e., let P̄0 be the n × n matrix of zeros. Each
node i in this setting has resources ci that are yet to be attack-targeted, and self-liabilities, bi .
In order to keep an organization’s net worth unchanged, we introduce “fictitious” resources ci

and self-liabilities bi to maintain balance. More specifically, if ci − bi < wi , we give i a new class
of resources in the resource amount c ′i = wi − (ci − bi ). If ci − bi > wi , we give i a new class of
self-liabilities in the amount b ′i = wi − (ci − bi ). We assume that the new resources are safe, i.e.,
they are not subject to cyber-attacks, and that the new liabilities have the same priority as other
liabilities. Let F (x1, . . . . . .xn ) be a joint loss distribution that is homogeneous in resources, i.e.,
F (x1, . . . . . .,xn ) = G ( x1

c1
, x2

c2
, . . . . . . xn

cn
), where G is a symmetric cumulative distribution function.

We do not assume that losses across nodes are independent. We say that F is IFR if its marginal dis-
tributions are IFR; this is equivalent to saying that the marginals ofG are IFR. Let L̄ be the expected
total losses in the original network and let L̄0 be the expected total losses when the connections
are removed. We have the following result relating L̄ and L̄0.

Theorem 5.1. Let N (�b,�c, �w, P̄ ) be an organizational network system and let N 0 be the analogous

system with all the network connections removed. Assume that the loss distribution is homogeneous

in resources and IFR. Let β+ =maxi βi < 1, and let δi = P (Xi ≥ wi ). Then, the ratio of expected losses

in N 0 is at most
L̄

L̄0
≤ 1 +

∑
i δici

(1 − β+)
∑

i ci
. (47)

Proof. By assumption, the marginals of F are IFR distributed. A general property of IFR distri-
butions is that “new is better than used in expectation”, i.e.,

E[Xi −wi |Xi ≥ wi ] ≤ E[Xi ], (48)

from Barlow and Proschan [1975]. It follows that

E[(Xi −wi ]
+] ≤ P (Xi ≥ wi )E[Xi ] = δiE[Xi ]. (49)

By (43), we know that the total expected losses L̄ can be bounded as

L̄ ≤
∑

i

E[Xi ∧wi ] + E
⎡⎢⎢⎢⎢⎣
∑

i

(Xi −wi )ui (X )
⎤⎥⎥⎥⎥⎦ . (50)
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From (46), we know thatui ≤ 1
1−β+

for all i; furthermore, we clearly haveXi −wi ≤ (Xi −wi )+ for
all i . Thus,

L̄ ≤
∑

i

E[Xi ∧wi ] + (1 − β+)−1
∑

i

E[(Xi −wi )+]. (51)

From this and (49), it follows that

L̄ ≤
∑

i

E[Xi ∧wi ] + (1 − β+)−1
∑

i

δiE[Xi ], (52)

which reduces to

L̄ ≤
∑

i

E[Xi ] + (1 − β+)−1
∑

i

δiE[Xi ]. (53)

When the network connections are excised, the expected loss is simply the expected sum of
the losses, that is, L̄0 =

∑
i E[Xi ]. By the assumption of homogeneity in resources, we know that

E[Xi ] ∝ ci ] for all i . We conclude from this and (53) that

L̄

L̄0
≤ 1 +

∑
i δici

(1 − β+)
∑

i ci
.

Thus, we have proved Theorem 5.1. �

Theorem Implications. The theorem shows that increases in losses due to liability network in-
terconnections will be very small unless β+ (the maximum proportion of obligations by any node
in the network) is close to 1, or the rate at which an organization becomes dysfunctional is high,
both of which are quite unlikely in practice. Moreover, the latter statement also holds when the
losses across nodes are dependent or correlated, regardless of the network structure.

Cyber-Insurance Perspective. Since the losses due to networked connectivity is primarily ampli-
fied due to a high β+, which in turn implies the high dysfunctionality rate of an organization, it is
imperative that cyber-insurers impose a strict control policy via their contracts with the organiza-
tions to ensure the highest standards of cyber-hygiene from the latter that results in low/moderate
values of β+. This in turn would reduce the probability of a cyber-blackout and also mitigate the
chances of cyber-insurers going bankrupt in the process of covering correlated aggregate risk. An
intuitively evident insurance policy mechanism in this regard is to premium discriminate between
good hygiene and bad hygiene organizations [Pal et al. 2014]. Such policies have been shown to
be market efficient in the economic sense.

5.3 Side-Effect (Reputational) Losses upon Organizational Node Dysfunctionality

In practice, once an organizational node becomes dysfunctional, as a side-effect, there is likely to
be a negative impact on its reputation, apart from the usual loss in assets. Although such reputa-
tional losses are non-tangible in nature, we capture this phenomenon through a scalar multiplier
ρ ≥ 0 for each organization, reflecting on the amount of further reduction in its assets, on facing
dysfunctionality. This amount is mathematically characterized as

ρ

⎡⎢⎢⎢⎢⎢⎣p̄i − ���ci +
∑
j�i

pjaji − xi
	
�
⎤⎥⎥⎥⎥⎥⎦ (54)

and reaches a maximum reduction amount where all the assets are wiped out. The term in the
square is the difference between the dependency obligations of node i and its remaining assets.
The parameter ρ magnifies the severity of the loss—the term in the square bracket, as a knock-on
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effect due to a hit in organizational reputation. The resulting condition for a clearing vector is a
solution to the following equation:

pi (x ) = p̄i ∧
⎡⎢⎢⎢⎢⎢⎣(1 + ρ) ���ci +

∑
j�i

pjaji − xi
	
� − ρp̄i

⎤⎥⎥⎥⎥⎥⎦+ (55)

In terms of deficit si = p̄i − pi , the above expression becomes

si = (1 + ρ)

⎡⎢⎢⎢⎢⎢⎣
∑
j�i

sjaji −wi + xi

⎤⎥⎥⎥⎥⎥⎦+ ∧ p̄i (56)

We have the following result stating the effect of ρ on magnifying the deficit.

Theorem 5.2. Let Φs
ρ denote the mapping from the vector s on the LHS of (56) to the s on the RHS

of (56). Similarly, let Φ
p
ρ denote the mapping from the vector p on the LHS of (55) to the s on the RHS

of (55). For any ρ ≥ 0, the mapping Φs
ρ is monotone, increasing in ρ ∀s , bounded, and continuous

on Rn
+, whereas the mapping Φ

p
ρ is monotone, decreasing in ρ ∀p, bounded, and continuous on Rn

+.

Furthermore, Φs
ρ and Φ

p
ρ have least and greatest fixed points, s and p, respectively. The subsequent set

of dysfunctional organizational nodes under minimal s and maximal p is increasing in ρ. In addition,

the fixed point s and p is unique if (1 + ρ)A has a spectral radius < 1.

Proof. The nature of mappings Φs
ρ and Φ

p
ρ follow directly from Theorem 1 of Eisenberg and

Noe [2001]. Letvi = ci + (pA)i − xi . We have Φ
p
ρ (p)i taking a value ofvi − ρ (p̄i −vi ) whenvi < p̄i ,

and equalling p̄i otherwise. This leads to the monotonicity of Φ
p
ρ with respect to ρ. The maximal

fixed-point results as a limit of the sequence {Φp
ρ } beginning with p̄, as a consequence of arguments

in Section 3 of Eisenberg and Noe [2001]. More specifically, if ρ1 ≤ ρ2, then Φ
p
ρ1
≤ Φ

p
ρ2

. The set
of organizational nodes i for which pi < p̄i at the maximal fixed-point for ρ1 must be contained
within that for ρ2. The uniqueness arguments follows from the case when there are no side-effect
losses. The proof of statements regarding Φs

ρ follows exactly as those for Φ
p
ρ . Thus, we have proved

Theorem 5.2. �

Theorem Implications. The obvious implication of the theorem is that reputation-centric losses
on a cyber-attack increase contagion in a service network and results in an increased number of
dysfunctional organizational nodes. The spectral condition for fixed-point uniqueness is a reality
in the sense that a chain of obligations ending in an obligation loop around the same organizations,
is common in practice.

Cyber-Insurance Perspectives. Reputation-centric losses are third-party in nature and only make
it more difficult for profit-minded cyber-insurance agencies to cover amplified organizational
losses. A step forward for the insurance companies to alleviate this concern is to charge amplified
premiums based on the number of liabilities of a given organization.

Now suppose that the reputation-centric losses are not that big to wipe out all the assets of an
organization. In that case, we have

SD = (1 + ρ)[SDAD −wD + xD ].

Given, ID − (1 + ρ)AD is invertible, we have

sD = (1 + ρ) (xD −wD )[ID − (1 + ρ)AD ]−1.

The deficit is given by
S (x ) = SDuD = (1 + ρ) (xD −wD )uD (ρ), (57)
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where uD is a modified organizational node depth vector given by [ID − (1 + ρ)AD ]−1 · 1D . When
(1 + ρ)AD has spectral radius 1, we get

uD (ρ) = [ID + (1 + ρ)AD + (1 + ρ)2A2
D + . . . . .] · 1D .

Letting αD denote the cohesiveness of D, the lower bound depth of each organizational node is
given by 1

1−(1+ρ )αD
. Thus, from this expression of lower-bound depth, we can assess how side-

effect losses deepen the total losses at dysfunctional organizational nodes. Let L̄ be the expected
total losses in the original network and let L̄0 be the expected total losses when the connections
are removed. We have the following result relating L̄ and L̄0.

Theorem 5.3. Given (1 + ρ)β+ < 1, we have

L̄

L̄0
≤ 1 +

∑
i δici

(1 − (1 + ρ)β+)
∑

i ci
. (58)

Proof. By assumption, the marginals of F are IFR distributed. A general property of IFR distri-
butions is that “new is better than used in expectation”, i.e.,

E[Xi −wi |Xi ≥ wi ] ≤ E[Xi ], (59)

from Barlow and Proschan [1975]. It follows that

E[(Xi −wi ]
+] ≤ P (Xi ≥ wi )E[Xi ] = δiE[Xi ]. (60)

By (43), we know that the total expected losses L̄ can be bounded as

L̄ ≤
∑

i

E[Xi ∧wi ] + E
⎡⎢⎢⎢⎢⎣
∑

i

(Xi −wi )ui (X )
⎤⎥⎥⎥⎥⎦ . (61)

From (46), we know thatui ≤ 1
1−(1+ρ )β+

for all i; furthermore, we clearly haveXi −wi ≤ (Xi −wi )+

for all i . Thus,

L̄ ≤
∑

i

E[Xi ∧wi ] + (1 − (1 + ρ)β+)−1
∑

i

E[(Xi −wi )+]. (62)

From this and (49), it follows that

L̄ ≤
∑

i

E[Xi ∧wi ] + (1 − (1 + ρ)β+)−1
∑

i

δiE[Xi ], (63)

which reduces to

L̄ ≤
∑

i

E[Xi ] + (1 − (1 + ρ)β+)−1
∑

i

δiE[Xi ]. (64)

When the network connections are excised, the expected loss is simply the expected sum of
the losses, that is L̄0 =

∑
i E[Xi ]. By the assumption of homogeneity in resources, we know that

E[Xi ] ∝ ci ] for all i . We conclude from this and (53) that

L̄

L̄0
≤ 1 +

∑
i δici

(1 − (1 + ρ)β+)
∑

i ci
.

Thus, we have proved Theorem 5.3. �

The theorem and cyber-insurance implications are similar to those of Theorem 5.1.
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Fig. 1. Experimental parameters for real-world data: (a) ci and wi values (left), (b) βi values (middle), and,

(c) λi values (right).

6 EXPERIMENTAL EVALUATION

Experimenting with multiple real-world datasets related to cyber-attacks and their subsequent im-
pact is an extremely difficult task, as data on cyber-security is really hard to obtain. As a result,
in this section, we experiment on both real-world and synthetic banking sector application data
obtained after a cyber-attack in the European Union. In this regard, we study the effects of pa-
rameters ci ,wi , λi , and βi on strong and weak contagion phenomena, in turn studying how our
theoretical results apply in practice. We also experiment on synthetic data to study the effect of
network topology on contagion phenomena.

6.1 Experimental Setup

One of the responsibilities of the European Banking Authority (EBA) is to ensure the orderly func-
tioning and integrity of financial markets and the stability of the banking system in the EU. A pri-
mary supervisory tool to conduct such an analysis is via a stability test exercise. The aim of such
a test is to assess the resilience of banking institutions to adverse market developments, as well
as to contribute to the overall assessment of systemic risk in the EU banking system, where the
systemic risk could be due to a cyber-attack. We collected data for a cyber-attack–induced stress
test done in 2015. Detailed information on inter-bank exposures needed to calibrate a full network

was not publicly available. As a result, as aforementioned, we also generated 50 instances of synthetic

random networks between banks in the 2015 dataset to study the effect of network topology on the

contagion phenomena.

For the real dataset, 90 banks from 21 countries participated in the stress test. For each bank, the
EBA reports each bank’s total exposure at the dysfunction state to other banks. The EAD measures
a bank’s total claims on all other banks, so we take this as the size of each bank’s in-network assets.
Subtracting this value from the total assets gives us ci . For wi (see Figure 1(a)), we use the equity
values reported by the EBA, which then allows us to calculate λi =

ci

wi
(see Figure 1(c)). The only

remaining parameter we need is βi , the fraction of a bank’s liabilities owed to other banks. This
information is not included in the EBA summary, nor is it consistently reported by the banks in
their statements. As a rough indication, we assume that each bank’s in-network liabilities equal
its in-network assets.2 This gives us βi =

EAD
assets−equity (see Figure 1(b)). Some of the smallest banks

have a problematic data, so as a simple rule we omit the ten smallest. We also omit any countries
with only a single participating bank. This leaves us with 76 banks, out of which we work with
50 largest banks. For synthetic datasets, we estimate the parameters ci ,wi , λi , and βi in the same
manner as for our real-world dataset.

2Based on Federal Reserve Release, the average value of βi for commercial banks in the USA is about 3%, so our estimates
for European banks would appear to be conservative.
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Fig. 2. Performance on real-world data: (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio (LR) (right).

Fig. 3. Performance on Instance #1 of synthetic data: (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio

(LR) (right).

We examine the potential for contagion from the failure of the five largest banks (Bank #’s 1-4 in
the figures). Taking each of these in turn as the triggering bank, we then take the dysfunctional set
D to be consecutive pairs of banks, e.g., the first dysfunctional set under Bank #1 is Bank numbers
2 and 3, the next dysfunctional set consist of Bank numbers 3 and 4, and so on. As peformance
metrics, we study ‘Contagion Ratio’ (CR) and ‘Likelihood Ratio’ (LR), where we define CR to be
the ratio of the LHS of inequality (17) to the RHS of the inequality. We term CR as ‘weak’ if it is
greater than 1. We define LR to be the relative probability of organizational dysfunction through
independent direct cyber-shocks and through contagion, calculated as the ratio of the RHS of (18)
to LHS. To clearly screen out the pattern of LR and CR values with respect to a varying dysfunc-
tional set, we run additional experiments per triggering node in the set of Bank #s 1 to 4, where
for each triggering bank, i , we study the trends for varying βi and λi values for i . We illustrate the
results of the study through plots from Figures 9–12.

6.2 Experimental Results

From Figures 2(a)–4(a), we observe that CR is weak for most organizations, validating our theory
that cyber-blackouts through strong contagion effects are less likely. CR fails to be weak only
when banking organizations in the dysfunction set D are much smaller (in revenue worth) than
the triggering bank. Moreover, the value of CR reported for each bank shows how much βi would
have to be to reverse the direction of inequality (17). In this sense, the plots in Figure 2(a) are robust
to the estimated values of βi . Expanding the size of set D makes contagion weaker because of the
relative magnitudes of wi and λ−1

i . High values of LR indicate the dominance of the probability
of organizational node dysfunction through independent shocks over node dysfunction through
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Fig. 4. Performance on Instance #2 of synthetic data: (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio

(LR) (right).

contagion. Our plots show that the LR is mostly greater than 1, validating our theory that contagion
does not play a major role in organizational dysfunction in the event of a cyber-attack. From
Figures 3 and 4 (2 of the 50 random synthetic instances), we observe that network topology does
not have a significant role in shaping the contagion phenomenon, i.e., majority of organizations
are in the weak contagion zone. However, the CR ratios differ from topology to topology as evident
in differences in the plot structure between Figure 2 and Figures 3 and 4. Even if we do not have
information on the organizational liability topology of our real-world data, it is evident there is
a structure to that topology compared to those characterizing synthetic data. From Figures 9 to
12, we observe that CR values decrease with increasing βi for each triggering node i —primarily
because increasing the fraction of liabilities (βi ) reduces the chances of weak contagion, and high
values of βi leads CR to be less than 1 indicating strong contagion. With increasing size of setD, CR
increases reflecting the difficulty to dysfunction a larger set D —a case indicating weak contagion.
Given a fixed D not containing triggering node i , with increasing λi =

ci

wi
(increased leverage) CR

decreases indicating reduced chances of weak contagion. With respect to LR, increasing the size
of set D increases LR reflecting an increased propensity towards weak contagion—simply because
it is difficult to difficult a large set D. Increasing βi decreases LR, again indicating the negative
impact of the higher fraction of liabilities on ensuring weak contagion. The higher the λi values,
the lesser the value of LR relating to reduced chances of weak contagion—simply because higher
λi values imply higher cyber-risk for i to become dysfunctional.

Simulations on Non-Bank Settings. Due to lack of real-world data, we are only able to provide sim-
ulation results on cyber-blackout scenarios other than the banking sector. Unlike the bank-sector
evaluation for which we can estimate graph formation information, we adopt a general (Poisson)
random graph formation approach to denote the inter-dependency between organizations. We
vary the average degree of a node in the graph from 2 to 8, and keep the liability parameters the
same as that of the 2015 dataset, due to the fact that the conceptual essence of liability remains
similar across applications. Our rationale to vary the average node degree is due to the the differ-
ing nature of applications, that might result in dependency graphs of varying structures. For each
average node degree case, we run 50 random instances of graph formation. Due to similarity of
the plots (for both, Contagion Ratio and Likelihood Ratio), We showcase a single representative
instance of each average node degree case, in Figures 5–8. We observe from Figures 5–8, the sim-
ilarity of our plots to Figures 1-4. The main message here is the robustness of our results to the
network topology, i.e., the network topology does not have a significant role in shaping contagion
phenomenon—our inference here is based on simulation data rather than real-world experimental
data.
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Fig. 5. Performance on instance of synthetic data (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio (LR)

(right) [Case for Average Node Degree 2].
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Fig. 6. Performance on instance of synthetic data (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio (LR)

(right) [Case for Average Node Degree 4].
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Fig. 7. Performance on instance of synthetic data (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio (LR)

(right) [Case for Average Node Degree 6].
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Fig. 8. Performance on instance of synthetic data (a) Contagion Ratio (CR) (left), (b) Likelihood Ratio (LR)

(right) [Case for Average Node Degree 8].

ACM Transactions on Management Information Systems, Vol. 11, No. 2, Article 5. Publication date: May 2020.



When Are Cyber Blackouts in Modern Service Networks Likely? 5:29

1

20

40

60

 0  2  4  6  8  10

CR Decreasing, LR Increasing λ1 = 5

C
R

, L
R

Size of Dysfunctional Set

CR, β1 = 0.1
CR, β2 = 0.3
CR, β3 = 0.5
CR, β4 = 0.9

LR, β1 = 0.1
LR, β2 = 0.3
LR, β3 = 0.5
LR, β4 = 0.9

1

20

40

60

 0  2  4  6  8  10

CR Decreasing, LR Increasing λ1 = 10

C
R

, L
R

Size of Dysfunctional Set

CR, β1 = 0.1
CR, β2 = 0.3
CR, β3 = 0.5
CR, β4 = 0.9

LR, β1 = 0.1
LR, β2 = 0.3
LR, β3 = 0.5
LR, β4 = 0.9

Fig. 9. Performance on instance of synthetic data (Contagion ratio & likelihood ratio) [Triggering Node

#1].
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Fig. 10. Performance on instance of synthetic data (contagion ratio & likelihood ratio) [Triggering Node

#2].
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Fig. 11. Performance on instance of synthetic data (contagion ratio & likelihood ratio) [Triggering Node

#3].

7 RELATED WORK

In this section, we cite works most related to ours in this article. However, we would like to
emphasize upfront that a rigorous analysis (and the consequent impact on the cyber-insurance
business) of the likelihood of cyber-blackout phenomena in a network is absent in literature for
cyber-insurance or network risk management settings, and our efforts here in this direction are
completely new to the best of knowledge. We structure this section in two parts that form a tan-
gential relationship to our work in this article: (a) cyber-insurance market success and (b) risk
estimation in network contagion settings.

7.1 Success of Cyber-Insurance Markets

In this work, we investigated worst-case scenarios for a cyber-insurer to cover aggregate cyber-
risks. However, a precursor is to have working successful markets in the first place. To this end,
recent research works on cyber-insurance [Hoffman 2007; Lelarge and Bolot 2009; Shetty et al.
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Fig. 12. Performance on instance of synthetic data (contagion ratio & likelihood ratio) [Triggering Node

#4].

2010] have mathematically shown the existence of economically inefficient insurance markets. In-
tuitively, an efficient market is one where all stakeholders (market elements) mutually satisfy their
interests. These works state that cyber-insurance satisfies every stakeholder apart from the regu-
latory agency (e.g., government), and sometimes the cyber-insurer itself. The regulatory agency is
unsatisfied as overall network robustness is sub-optimal due to network users not optimally invest-
ing in self-defense mechanisms, whereas a cyber-insurer is unsatisfied due to it potentially making
zero expected profit at times. In Pal and Golubchik [2010], the authors proposed a Coasian bar-
gaining approach among cyber-insured network entities to achieve an efficient insurance market—
however, costless bargaining under which the Coase theorem holds is idealistic in nature and might
not be feasible to implement in practice. Lelarge and Bolot [2009] recommended the use of fines
and rebates on cyber-insurance contracts to make each user invest optimally in self-defense and
make the network optimally robust. However, their work neither mathematically proves the effec-
tiveness of premiums and rebates in making network users invest optimally, nor does it guarantee
the strict positiveness of insurer profits at all times. In recent works [Pal et al. 2011; 2014; 2018;
Khalili et al. 2018], the authors overcome the drawbacks of the mentioned existing works, and pro-
pose ways to form provably efficient monopolistic cyber-insurance markets by satisfying market
stakeholders, including a risk-averse cyber-insurer, in environments of interdependent risk. In ad-
dition, recent major successful cyber-attacks on large commercial organizations have significantly
increased board-level concerns to maintain business reputation amongst clients, and subsequently
accelerated the adoption of cyber-insurance.

Drawbacks. These works do not investigate issues related to the aggregated risk likelihoods in
a networked setting, and their impact on the cyber-insurance industry—a prime determinant for
the expansion of the industry.

7.2 Estimation in Attack Spread Settings

In Section 3, we emphasized that evaluating F actually involves mathematically capturing the
spread of the infection (attack) vector (e.g., a virus, bot), and is not the focus of this paper. Here,
we are only interested in the process of the spread of “organizational dysfunctionality” due to
cyber-attacks. The interested reader is referred to [Lelarge and Bolot 2009; Lorenz et al. 2009;
Ganesh et al. 2005] to get insights on statistical mean field models to mathematically evaluate F .
To the best of our knowledge, no work exists on the spread of “organizational dysfunctionality”
due to cyber-attacks as we imply in this article. In terms of the process of the spread of attacks in
networks, a related literature has directly originated from the study of cascades. Various models
have been developed in the computer science and network science literatures, including the widely
used threshold models [Granovetter 1978] and percolation models La [2016, 2018a, 2018b], Watts
[2002], Molloy and Reed [1998, 1995], Newman et al. [2001], and Chung and Lu [2002]. A few
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works have applied these ideas to various economic settings, including [Durlauf 1993] and [Bak
et al. 1993] in the context of economic fluctuations; [Morris 2000] in the context of contagion of
different types of strategies in coordination games; and more recently, [Gai and Kapadia 2010]
and [Blume et al. 2011] in the context of spread of an epidemic-like financial contagion, where
the seminal papers of [Allen and Gale 2000] and [Freixas et al. 2000] developed some of the first
formal models of contagion over financial networks.

- Drawbacks. Attack propagation does not imply service disruption. To this end, none of the
above works investigate the propagation of service dysfunctionality in a network.

8 DISCUSSION AND SUMMARY

In this section, we first discuss about the current commercial cyber-insurance market and the de-
gree of its inclination towards covering cyber-catastrophes, and follow it up with a summary of
this paper. Finally, we peep into future work by discussing an intuition related to current skep-
ticisms behind the statistical feasibility of covering aggregate heavy tailed cyber-risks by a risk
management firm. This intuition consequently calls for a deeper analysis into the statistical and
economic feasibility of expanding cyber re-insurance markets for catastrophic cyber-risks.

8.1 The Nature of Current Commercial Cyber-Insurance Offerings

Our work in this article has looked into the future of cyber-insurance coverage for the inter-
dependent IT service sector, with respect to quantifying the probability of a cyber-blackout. How-
ever, the cyber-blackout scenario though quite relevant for current (and future) general cyber-
insurance scenarios (energy, property, marine, aviation, etc.), is not primarily considered, i.e.,
mostly excluded, while selling insurance policies at present, simply due to profit-minded cyber-
insurance agencies being considerably risk-averse on a ruin event arising for correlated and ag-
gregate risk.3

To provide support for the above argument (based on data from Coburn et al. [2018]), currently,
an estimated half of all cyber insurance policies sold are for limits of less than US$1 million. Limits
of over US$10 million are rare (less than 10% of policies written), and for a company to obtain cyber-
insurance coverage of US$100 million or more requires the construction of complex ‘towers’ of
coverage involving many different cyber-insurance companies, each taking a small slice. Limits are
increasing over time as cyber-insurers gain confidence, but the protection being offered is not what
is being requested by the market. The losses to a company from a (catastrophic) cyber attack can
be many hundreds of millions of dollars. The cyber-insurer is providing some financial assistance
to its policyholders in the event that they suffer an attack, but is by no means indemnifying their
losses as insurers do in other lines of insurance. Companies are left to fund most of the big losses
themselves. In general, we estimate that cyber-insurers bear less than 10% of the losses that occur
each year. If there were to be a major cyber-catastrophe where large numbers of companies were
hit by substantial losses, the cyber-insurance industry would probably bear 15–20% of the total
loss experienced by the economy. The cyber-insurers are maintaining their profitability levels,
averaging around half of the annual premium generated being paid out in claims, through tightly
managed limits and deductibles representing good, safe cyber-risk management. The technique
of writing a diversified portfolio of relatively small limits across large numbers of customers is
standard practice for spreading the risk.

3Warren Buffet and PWC (FTSE Global Markets 2016) have urged against being cautious against the perils of providing
cyber-insurance for modern cyber-risks, unless currently privatized and profit-minded markets have serious government
intervention to tackle tail-risks in cyber-catastrophe events.
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In an emerging market like cyber-risk, where the true nature of the risk is not yet well under-
stood, the cyber-insurers need to ‘buy loss experience’ building up a database of claims year on year
that will help them understand the risk and its characteristics. Subsequently, for cyber-insurance
to become a significant-sized market, companies need to be offered limits that are meaningful
against the losses that they face. For cyber-insurance companies to offer larger limits, they have to
increase the capacity that they make available to cyber-risk. Capacity allocation depends on these
insurance companies feeling confident that they have adequately assessed, and priced in, the risk
of cyber-catastrophe. A way forward is for cyber-insurers and cyber-re-insurers build their own
internal models of cyber-risk, including robust estimates of tail and correlated cyber-risks (such
as in Pal et al. [2019]) and costs of risk capital.

Current statistics on cyber attacks show that rate (evaluated using state-of-the-art industry tech-
niques) of cyber-loss vary very significantly for businesses of different sizes, and also between dif-
ferent business sectors. The demand for cyber-insurance, driven by the risk and, more importantly,
by the perception of the risk, is similarly varied. A key segmentation is between the insurance mar-
ket for small and medium-size enterprises (SMEs) and the market for big individual accounts, the
large and premier companies. SMEs are a more volume market, with standardized policies and
lower premium payments, but tend to have lower cyber-security standards. Big accounts require
more customized insurance terms and individual careful (and expensive) underwriting, and are
likely to be more targeted by cyber-attackers. The very largest companies (Forbes Global 2000
companies, for example) tend to self-insure, so the big-account insurance market is dominated
by large second-tier corporations. Over half of the demand for cyber-insurance comes from com-
panies in the IT, financial services, retail, and healthcare sectors, so it is natural for insurers to
end up with concentrations of these in their portfolios. Cyber-re-insurance is a possible option
to cover large-valued risks due to a blackout event triggered by a cyber-catastrophe, but for any
sorts of reinsurance the risks of the individual policies must be aggregated. In this regard, the reg-
ulations affecting the risk of each company would not be treated differently than any other risk
that differs across companies / individual policies. In the case of big service-providing companies
(e.g., Google), the latter currently (as above-mentioned) do not burden themselves with the risk of
those using their services. Cyber-re-insurance services can be complemented via deficit financing
methodologies supported by the government agencies. However, steps should be taken to address
major geo-political and geo-policy issues that might prevent a wide-spread adoption of deficit fi-
nancing (an interesting direction for future research work), without which re-insurance services
will remain a private venture, built upon some assumptions made in this article.

8.2 Summary of This Article

In this article, we studied the general question: Is a cyber-blackout in a service organizational net-

work likely? More specifically, we estimated the probability that all or a major subset of nodes in
the network become dysfunctional to provide service in the event of a cyber-attack, a situation
which we define as a cyber-blackout. The motivation for our research stems from the fact that
service liability interconnections among networked IT-driven service organizations create poten-
tial channels for cascading service disruptions due to modern cyber-crimes such as DDoS, APT,
and ransomware attacks, and cause a bankruptcy-scare effect amongst cyber-insurers via cover-
ing aggregate cyber-risk. This scare-effect is the root cause behind cyber-insurers not opening up
their coverage capacities enough to boost the cyber-insurance market to prepare for risk manage-
ment in the age of modern cyber-attacks. As part of our research contributions, we first designed
a graph-based model of service obligations, GSOM, between organizations in a service chain net-
work. In the event of a cyber-attack, given the values of losses at the nodes in the network, GSOM
computes the vector of service valuations that clears the network, and identifies the nodes in the
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chain that are dysfunctional to provide service. Using GSOM, we then analyzed (i) how likely it is
that a given set of target organizations will become dysfunctional due to contagion from a single
source organization, as compared to the likelihood that they become dysfunctional from direct
losses to their own service-related assets that does not require dependency on other nodes, and
(ii) how much does the underlying network of service dependencies contribute to the increase in
the probability of dysfunction of target nodes and corresponding expected value of losses, com-
pared to a situation when there are no network links. As a surprising result, we showed that the loss
probability is larger in the absence of network connectivity than that in the presence of network
connectivity, implying that simple network spillover effects have a limited impact (except under
specific conditions) with respect to service obligations between organizations. We also showed
that total additional losses due to network spillover effects are surprisingly small under a wide
range of joint distributions for plausible values of model parameters. Finally, we expanded the set
of attack sources from a single node to multiple nodes, and studied the negative impact of simulta-
neous attacks on the entire network. We again showed that the increase in losses due to network
interconnections are mostly very small, independent of the network structure and under general
assumptions about the joint loss distribution—the primary rationale being attributed to degrees of
heterogeneity in wealth base among organizations, and Increasing Failure Rate (IFR) property of
loss distributions. Thus, the results obtained through our work encourages cyber-insurers to open
up their coverage capacities for a healthy cyber-insurance market.

8.3 Peeping into Future Work

Thus far, we have primarily addressed the effect of the network and mathematically light-tailed IFR
cyber-risk distributions on cascading service dysfunctionality phenomena. In reality, modern age
catastrophic cyber-loss distributions could be heavy-tailed in nature. In this section, we provide a
statistically intuitive explanation behind aggregate cyber-risk managers like re-insurance services
being skeptical of resolving the problem of successfully covering aggregate cyber-losses, when an
IT-driven liability-networked system is subject to catastrophic cyber-attacks. The crucial impor-
tance of this statistical intuition lies in it driving (via its impact on cyber-insurer utility) a formal
strategic/economic model, as part of future work, that will help us establish the (in)-effectiveness
of re-insurance services provided via a competitive market.

Risk Aggregation due to the Liability between Organizations. Cyber-insurance firms that cover
organizational losses generally take on a limited coverage liability. In addition, they insure service
organizations that are often liable for maintaining the QoS of firms dependent on the latter. In
such situations, though the insurers of individual firms have the advantage of diversifying their
coverage to multiple other insurance firms of organizations they depend upon, there is a disad-
vantage as well that arises when a cyber-attack causes significant cascading losses in a network of
service-liable organizations. Intuitively, it is not certain here that a risk-averse cyber-re-insurance
firm will always find it profitable (or even feasible) to cover aggregate losses for supply-chain
networks of IT-driven industries.

Intuition via Cyber-Risk Distributions. Having mentioned above about the summation of individ-
ual risks, it makes sense to investigate in the first place the impact that individual risk distributions
might have on the aggregate risk, after a cyber-attack. Traditional cyber-attacks often lead to or-
ganizational risk-distributions that have short-tails [Coburn et al. 2018]. On the contrary, modern
cyber-attacks, fueled by the rise of large-scale IoT technology, are likely to generate organiza-
tional risk distributions that are heavy-tailed in nature [Coburn et al. 2018]. In such settings, it is
interesting to get an idea of (and compare) whether the resulting aggregate risk distribution (from
multiple organizational nodes) at a re-insurer’s end is favorable to provide coverage. We consider
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the Normal distribution as a representative of light-tail distributions, and the Levy and the Cauchy

distributions as representative examples of heavy-tailed risk distributions that are stable,4 i.e., a
subclass of distributions whose left tails satisfy a Pareto law and exhibit power-law decay of the
form F (−x ) ≈ x−α . Here x ,α > 0, and F is a cumulative distribution function (cdf) for a risk r.v. X .

It is popular knowledge that, for K i.i.d cyber-risk random variables X1,X2, . . . ,XK chosen

from the standard normal N (μ,σ 2), the resultant random variable (r.v.)
∑K

i=1 Xi

K
is distributed with

N (μ,σ 2). The system implication of this r.v. in our article setting is a cyber-insurance company
that outsources risk Xi to re-insurer i among the K cyber re-insurers. Thus, the risk spread of the
popular value-at-risk (VaR) metric [Holton 2003], reflected through the spread parameter σ , grows

as
√

1
K

of σ for a given location parameter μ implying decrease in VaR5 spread on sum-averaging

K risks. Thus, in this case, it is better for a cyber-insurance company to re-allocate/spread the
risks from its clients to re-insurers. Now consider a cyber-risk distribution that is Levy distributed
[Forbes et al. 2011] with location parameter μ and spread parameter σ . The pdf and cdf are respec-
tively given by

ϕ (x ) =
⎧⎪⎨⎪⎩
√

σ
2π
e
−σ

2(μ−x ) (μ − x )
−3
2 if x < μ,

0 if x ≥ μ,

F (x ) =
⎧⎪⎪⎨⎪⎪⎩

2√
π

∫ −σ√
2(μ−x )

0 e−t 2
dt if x < μ,

1 if x ≥ μ .

Let Lμ,σ be the class of random variables (r.v.’s) with the above Levy distributions. Thus, for K

i.i.d cyber-risk random variables X1,X2, . . . ,XK chosen from Lμ,σ , we get
∑K

i=1 Xi

K
∈ Lμ,Kσ . There-

fore, contrary to the case of the normal distribution, the value-at-risk spread σ in the case of the
Levy distribution increases K-fold for a given μ implying a K-fold increase in cyber-risk on sum-
averagingK risks. Thus, in this case, it might not be beneficial for a re-insurance company to accept
the multiple risks from its clients. As another example, take the Cauchy distribution, whose pdf
for a given location parameter μ and scale parameter σ is given by

ϕ (x ) =
1

πσ

1

1 +
(

(x−μ )2

σ 2

) ,
where σ ,X ∈ Sμ,σ —the set of r.v.’s with Cauchy distribution having the corresponding location
and spread parameters. The cdf of X is given by

F (x ) =
1

2
+

1

π
tan−1

(x − μ
σ

)
.

4A distribution is said to be stable if a linear combination of two independent random variables with this distribution has
the same distribution, up to location and scale parameters. The Normal, Cauchy, and the Levy distributions are the only
stable distributions for which closed form expressions exist and consequently help in tractable analyses.
5We use the VaR notion of cyber-risk measure due to the fact that heavy-tailed distributions like the Levy and Cauchy
distributions do not have finite first- or second-order moments [Forbes et al. 2011]. Hence, functions of expected measures
of cyber-risk variables are undefined. One could well argue the use of the popular expected shortfall, i.e., CVaR, cyber-risk
measure that is coherent and is defined as the average of the worst losses of a portfolio; however, this metric requires
existence of the statistical first moments of cyber-risks to be finite, that may not be true of catastrophic cyber-risks. Thus,
the feasibility connotations with respect to the VaR metric would coincide with that obtained with respect to the CVaR
metric. In addition, it is not difficult to see from Acerbi [2002] and Cotter and Dowd [2006] that the assumptions close to the
existence of the means of the cyber-risks in consideration are also required for applications of coherent spectral measures
of cyber-risk that generalize expected shortfall.
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Thus, for K i.i.d cyber-risk random variables X1,X2, . . . ,XK chosen from Sμ,σ , we get
∑K

i=1 Xi

K
∈

Sμ,σ . Therefore, contrary again to the case of the Normal distribution, the value-at-risk spread σ in
the case of the Cauchy distribution does not decrease for a given μ implying neither an increase, nor
a decrease in cyber-risk on sum-averaging K risks. The Cauchy case is this intermediate between
the Levy case and the case with Normal distributions.

Intuition-Driven Pratical Insight. It is somewhat clear that light-tailed distributions might pose
less VaR to cyber-re-insurers when compared to heavy-tailed distributions. Even for the case
when ci ∈ R+ |

∑K
i=1 ci = 1, instead of being an uniform 1

K
; for each i ∈ {1, . . . ,K }, we will have

σ =
(∑K

i=1 (ciσi )
1
2

)2
in case of the Levy distribution, and σ =

∑K
i=1 ciσi in case of the Cauchy dis-

tribution. In both these distributional scenarios, the VaR to re-insurers is more than in the case
when some ci = 1, for a given i , and c j = 0 for all j � i (follows from the application of results
in majorization theory [Marshall et al. 1979]). This puts weight on our skepticism that cyber-re-
insurance services may not be profitable in the case when individual insurers with liability limits
are faced to cover heavy-tailed cyber-risks. Note that our skepticism also extends to scenarios
where cyber-risk distributional supports are bounded (e.g., under limited risk liabilities as men-
tioned in subsequent sections) for which an expected utility analysis on first moments can be
conducted.

APPENDIX A. GSOM EXAMPLE

In this Appendix, we exemplify the GSOM framework via a graphical example. To illustrate the
spread of cyber-attack shock-effects among liability-induced insured networked organizations,
consider the example in Figure A.1 (left). The number on each directed edge represents a payment
obligation, and each nodes net worth is shown in bold in blue. For example, consider firm C. It is
owed 160 currency units (CUs) by outside entities, and it owes 50 CUs to a possibly different set
of organizational entities as a result of cyber-attacks in the past. Additionally, C is owed 100 CUs
by organization B and it owes 100 CUs to each of organizations A and D. The difference between
C’s assets (160 + 100) and its liabilities (50 + 100 + 100) result in it’s net worth of 10 CUs.

Suppose now that the given organizational network is hit by a cyber-shock that causes some
organizations to default on their payments to C: instead of the promised 160 CUs, they pay only
40 CUs. Then C becomes dysfunctional because its assets total 100 + 40 = 140 CUs, whereas it owes
50 CUs to internal losses after the cyber-attack and 200 CUs to other entities, as part of service
liability. In this case, we assume that C’s remaining assets are paid pro-rata to C’s creditors. As
we shall see, C’s assets may turn out to be worth even less than 140 CUs, because its default may
trigger a chain of organizational node dysfunctions that lead back to C.

To work through these spillover effects, we proceed by computing “interim” payoffs as follows:
If we take the interim value of C’s assets to be 140 CUs, the pro-rata rule implies that C pays
(100/250) × 140 = 56 CUs to D, 56 CUs to A, and 28 CUs to itself (reserves for its self non-liable
losses). Now D has assets worth 204 + 56 = 260 CUs and debts totalling 300 CUs, so D is in a
dysfunctional state. The pro-rata rule implies that D pays 130 CUs to A and 130 CUs to itself. At
this stage, A’s assets have an interim value of 120 + 130 + 56 = 306 CUs, whereas its nominal
obligations come to 360 CUs. Thus, A becomes dysfunctional and the pro-rata rule implies that it
pays one-half of its assets to B, namely 153 CUs, and an equal amount to itself. At this juncture, B’s
assets are worth 153 + 30 = 183 CUs, whereas its obligations total 200 CUs. Therefore, B becomes
dysfunctional; it pays 91.5 CUs to C and 91.5 CUs to itself.

At this point, we discover that the value of 140 CUs that we used for C’s assets was incor-
rect. That value reflected the initial outside cyber-shock of 40 CUs, but it assumed full repayment
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Fig. A.1. GSOM framework: An example of service network with payments due (a) before cyber-shock (left),

(b) after cyber-shock (right).

of 100 CUs from B. In fact, B is able to pay at most 91.5 CUs, so C’s assets are worth at most
131.5 CUs and the cycle must be repeated. Because of this cascade of node dysfunctions, determin-
ing the consequences of the initial cyber-shock is a fixed-point problem. The reader may verify that
successive application of the fixed-point algorithm leads to the solution shown in Figure A.1 (right).
Here the incoming payments equal the outgoing payments at every node, and the payments from
each node are distributed in proportion to the nominal amounts owed. Thus, we obtain a mutually
consistent (equilibrium) set of payments; moreover, it is unique.
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