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Browser cookies are ubiquitous in the web ecosystem today. Although these cookies were initially introduced to preserve user-specific
state in browsers, they have now been used for numerous other purposes, including user profiling and tracking across multiple
websites. This paper sets out to understand and quantify the different uses for cookies, and in particular, the extent to which targeting
and advertising, performance analytics and other uses which only serve the website and not the user add to overall cookie volumes.
We start with 31 million cookies collected in Cookiepedia, which is currently the most comprehensive database of cookies on
the Web. Cookiepedia provides a useful four-part categorisation of cookies into strictly necessary, performance, functionality and
targeting/advertising cookies, as suggested by the UK International Chamber of Commerce. Unfortunately, we found that, Cookiepedia
data can categorise less than 22% of the cookies used by Alexa Top20K websites and less than 15% of the cookies set in the browsers of
a set of real users. These results point to an acute problem with the coverage of current cookie categorisation techniques.

Consequently, we developed CookieMonster , a novel machine learning-driven framework which can categorise a cookie into one
of the aforementioned four categories with more than 94% F1 score and less than 1.5 ms latency. We demonstrate the utility of our
framework by classifying cookies in the wild. Our investigation revealed that in Alexa Top20K websites necessary and functional
cookies constitute only 13.05% and 9.52% of all cookies respectively. We also apply our framework to quantify the effectiveness of
tracking countermeasures such as privacy legislation and ad blockers. Our results identify a way to significantly improve coverage of
cookies classification today as well as identify new patterns in the usage of cookies in the wild.
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1 INTRODUCTION

First introduced in the mid-nineties as a way of recording client-side state [22], cookies have proliferated widely on the
Web, and have become a fundamental part of the Web ecosystem. However, there is widespread concern that cookies
are being abused to track and profile individuals online for commercial, analytical and various other purposes [27].
Recently, there has been a movement to restrict their usage, and companies such as Google have announced plans to
replace certain kinds of cookies with more privacy-friendly equivalents [4]. Before such drastic changes, however, it
is important to take stock and understand how cookies are really being used across the Web. Given the variety and
number of uses for cookies and the fact that practically every website uses them, this is a herculean task.

This paper is a first attempt to address this problem and catalogue cookies in-the-wild. Currently the most commonly
used classification in English language websites is the one proposed by the UK International Chamber of Commerce
(UK ICC). The UK ICC catalogues cookies into four broad categories [14]: strictly necessary cookies, which are essential
for the website’s function (e.g., logins, shopping carts); performance cookies, which collect analytics information to
improve a website’s performance; functionality cookies which remember user choices such as preferred language or
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location, allowing personalisation of the website to the user; and targeting/advertising cookies, typically placed by third
party advertising networks with the permission of the first party website to profile users and serve them ads.

Our starting point is Cookiepedia, a database of over 31 Million cookies, which are categorised into the four UK ICC
categories. Unfortunately, however, our measurements show that when queried with the cookies from the Top20K
websites according to Alexa1, Cookiepedia can only identify and categorise around 22% of the cookies. We then turn to
a Chrome plugin which some of us developed previously [12], and is currently being used by over six thousand users.
475 of these users (from 44 countries) are continuously donating anonymised cookie data to us2. Cookiepedia coverage
on this dataset is even lower – it is able to classify less than 15% of this sample of cookies in-the-wild.

To address this problem, we treat the Cookiepedia data as a giant labelled dataset of cookie categories, using which
we train a number of standard machine learning models, using a standard 5-fold cross-validation. Several of these
models perform well, and we obtain a best-of-class F1 measure of around 0.95 with the Multinomial Naive Bayes
classifier. All our models rely on lexical n-gram features generated from the names of cookies. We then show that
our model, which we term as CookieMonster , not only performs well in automatically categorising cookies found in
the Cookiepedia data, but also generalises to other cookies in-the-wild. We manually classify cookies on a random
selection of Alexa Top 1 Million websites that are not in Cookiepedia, by leveraging GDPR consent managers used on
these websites to allow users in the EU to decline particular categories of cookies. We demonstrate that our model
is able to correctly predict (94% accuracy) the cookies which will be removed when a given category of cookies is
declined through GDPR consent management, which indicates that our models are able to correctly categorise cookies
in-the-wild.

Inspired by this performance on websites not represented in Cookiepedia, we then use our model on all cookies
in Alexa Top20K websites, and find that the necessary and functional cookies (which are the two categories that
are directly beneficial mainly to the user and not the website) constitute only 26.52% and 9.52% respectively of all
cookies. Furthermore, we demonstrate for the first time that there are a number of third party cookies which are multi
category. We then look at cookies donated by the users of our browser plugins, and find that even smaller percentages
– less than 9.52% (respectively 13.05%) of cookies found in-the-wild are necessary (resply. functional). Interestingly,
tracking/advertising cookies comprise 59.99% of cookies in the browsers of users from EU countries and a nearly similar
61.33% of cookies in non-EU countries, which is disturbing as it implies that EU users are not effectively utilising
GDPR consent management to decrease the numbers of trackers in their browsers. We find similar results for other
jurisdictions where there are web privacy-related laws, such as California (CCPA) or Brazil (LGPD). We also find that
ad blockers are not fully effective, managing to block between 40–80% of all the third party advertising cookies.

The rest of this paper is organised as follows: section 2 presents related work. section 3 presents the design of our
model, CookieMonster . section 4 then uses this model in-the-wild, beyond the Cookiepedia data it is trained on, and
counts the numbers of cookies that are not necessary and functional and can be eliminated, and quantifies the effects of
ad blockers and privacy regulations. section 5 concludes by discussing implications for future work.

2 RELATED WORK

We divide the related work in two dimensions—prior work on understanding usage of cookies with a focus on third-party
cookies and prior work on categorising cookies, which tried to bring transparency into the tracking ecosystem.

1https://alexa.com, which provides widely used ranks for websites
2This study is approved by our university ethics No. MRSP-19/20-18077
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Detecting third-party cookie usage in online tracking: Cookies are an integral part of the Web, and were designed
to store and remember information across sessions about a particular user visiting a particular site[22]. However,
cookies today are often leveraged for tracking users across services. These tracking cookies, often set by third-parties,
store and commercialize information regarding browsing habits of users, often without user consent.

In fact, privacy violation by these third-party cookies has become a common problem today, e.g., while browsing
news [1] or processing online payment [26] these cookies are generally placed to trace and speculate on users’ online
activities at scale. Consequently, a flurry of recent studies attempted to identify and detect these third-party cookies in
websites. Many of these studies leverage third-party domain names in cookies to detect third party cookies [29, 33]. A
few studies also leverage the similarity of source HTML codes of a website [17] to identify third-party presence and
alert users. However, these methods are often computationally expensive and greatly affects the practicality of real-time
detection [20]. Our study contributes to this line of study by designing CookieMonster , a novel machine learning-driven
method for scalably categorising cookies.

Aside from academic proposals, there are a number of deployed approaches to detect third party-cookie presence
and protect online users from privacy intrusion. For example, popularly used tracker-blocking lists like EasyList tried
to automate detection and blocking third-party trackers. However, researchers found that EasyList can miss around
25% tracker detection [3] and is extremely hard to be continuously updated due to ever changing lists of third party
domains [8]. Thus, our work provides a complementary machine learning-based approach for cookie categorisation
and potential blocking which can be used in conjunction with these list-based approaches. In fact, our work builds on
recent work that used a learning approach using web-traffic data [19]. This work captures invisible trackers missed
by filter lists using web-traffic from user’s computer and obtains 90.9% accuracy of detection for the Alexa Top10K
websites. Our approach is complementary as both can be used to identify and potentially block trackers. Moreover, our
system primarily depends on cookie names for categorization (removing the need for more computationally expensive
capture and analysis of web traffic). Furthermore, we identify not only trackers, but also necessary and performance
cookies and we achieve an accuracy of 94%, significantly more than prior work [19] for third-party tracker detection.
By virtue of using cookie names, our work also evades anti-ad-blockers—tools that are being developed against ad
blockers [11, 15] which aims to defeat today’s ad/tracker blocking systems by manipulating the webpage source code.
Categorising cookies in the online ecosystem: With the advent of General Data Protection Regulation (GDPR) in
the EU, cookie categorisation has become more structured. The UK ICC has suggested a 4-part cookie categorisation
which is now widely used [14]. Cookiepdia [25], a massive dataset of more than 31 million cookies collected from
websites and managed by OneTrust (a company for operationalising privacy, security and data governance), classify
some of their cookies into the categories suggested by ICC [7, 24]. However, a recent work shows that a large number
of cookies in Cookiepedia are categorised as “unknown” [5]. Multiple studies have used Cookiepedia but completeness
has been an issue, with less than 45% of cookie names being recognised [5, 6, 32], which has impacted the usability of
Cookiepedia for cookie categorisation.

To that end, a few earlier studies also looked at tracker categorisation using classification techniques. For example,
the timestamp or IP address embedded in cookies has been the basis of unsupervised classification of trackers [10], while
others use application-level traffic logs to automatically detect services running some tracking activity [21]. In general
even more studies have attempted to detect privacy leaks via machine learning, from detecting tracking to detecting
phishing [16, 18, 31]. In this work, we developed CookieMonster which uses a supervised classification approach.
CookieMonster uses Cookiepedia data as its training data to create a supervised cookie detection framework which is
accurate and categorises cookies with very low latency based on features extracted for just cookie names. Furthermore,
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the Cookiepedia labels allow us to divide cookies into all four UK ICC categories, rather than a coarse-grained division
into tracking and non-tracking cookies as in previous work.

3 COOKIEMONSTER: A SYSTEM TO UNDERSTAND COOKIE CATEGORIES

In this section, we present our attempt to categorise cookies first using Cookiepedia [25] and identify its inadequacy.
Then we will demonstrate how we designed CookieMonster using a data-driven approach to enable large-scale accurate
cookie categorisation.

3.1 Inadequacy of Cookiepedia for cookie categorisation

As we mentioned in section 1, we first attempted a simple off-the-shelf approach using Cookiepedia. Cookiepedia is an
open-source database of browser cookies containing cookie details as well as their categorisation according to cookie
usage. Cookiepedia is maintained by OneTrust, a privacy management software company and reports existence of
31,553,377 cookies [25] in their database.

Cookiepedia provides a simple online search interface to search for cookie names. To that end, we first used browser
automation using Selenium [28] to collect all active cookies from Alexa global Top20K websites. In total these
globally most popular 20,000 websites used 54,694 unique cookies (with unique cookie names, i.e., cookie identifiers)
for their visitors. In order to categorise these cookies, we query Cookiepedia with each of the cookie names using a
Selenium-driven automated browser. For each of these cookies, Cookiepedia returned one of six categories: Strictly
Necessary Cookies (essential for features of the website), Performance Cookies (used to collect information about how
visitors use a website), Functionality Cookies (allow websites to remember user preferences), Targeting / Advertising
Cookies (used to deliver personalized advertisements to users), Unknown and Nonexistent. The first four of these
categories are based on UK ICC categorisation, which is also used in GDPR cookie consent management platforms
[7]. An “Unknown” category indicates that the cookie exists in the Cookiepedia database but is not classified. A
“Nonexistent” label indicates that a particular cookie does not exist in the Cookiepedia database.

Cookie Category # cookies % cookies
Strictly Necessary 3,071 5.61
Functionality 1,102 2.01
Performance 3,025 5.53
Targeting/Advertising 4,380 8.01
Unknown 19,007 34.75
Nonexistent 24,108 44.08
Unknown+Nonexistent 43115 78.83
Total 54,694 100

Table 1. Cookie categorisation using Cookiepedia for cookies used by Alexa global Top20K websites. The first four
categories align with the UK ICC categories. Cookiepedia returns “nonexistent” when the cookie name does not exist
in its database, and ”unknown” when the cookie name exists in the database but has not been categorised. 78.83% of
cookies from Alexa Top20K websites are either unknown or nonexistent.

We present the Cookiepedia-driven categorisation of 54,694 unique cookies used by 20,000 top Alexa websites (that
we collected) in Table 1. We make an surprising yet important observation–43,116 (78.83%) of the cookies used by these
Top20K websites simply remain uncategorised when we use Cookiepedia database. Thus, even a massive database like
Cookiepedia simply fell short in categorising the majority of the cookies used in even most popular websites today. To
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(a) Strictly Necessary (b) Functionality (c) Performance (d) Targeting/Advertising

Fig. 1. Wordclouds showing the most frequent tokens within cookie names from each cookie category.

that end, in order to improve the categorisation of cookies while ensuring high accuracy and coverage we design and
evaluate CookieMonster .

3.2 CookieMonster Design

The key idea of our system is to use machine-learning for accurate cookie categorisation in the wild. The ground truth
for our classifier is the cookies collected from Alexa 20k websites which is classified in one of the four meaningful
categories via Cookiepedia. There were 11,578 such cookies with their categorisation into four categories–Strictly
Necessary, Functionality, Performance, Targeting/Advertising (Table 1). For these cookies we used features extracted
from the cookie names to train our classifier.

3.2.1 Preprocessing and tokenising cookie names. Each cookie is a name-value pair and the cookie-name is
unique for each cookie. We noted via manual inspection that cookie names can be meaningful and appear to provide
some hints about functionality. Thus we decided to use features extracted from these names for categorisation. First, we
removed all numbers from each cookie name ((e.g., ADS_324 became ADS_). Next, we tokenise these names using
punctuation characters (e.g., %, ∼, ., _, -). Thus, at the end of preprocessing and tokenization, a cookie with the name
gdpr-track-status45 will be split into tokens “gdpr”, “track”, “status”. Furthermore, we split the resultant token using
capitalization (i.e., AnalysisUserId→ [Analysis, User, Id] ) and used the enchant dictionary [30] to segment known word
combinations into root words (i.e, dayssincevisit → [days, since, visit] ). Finally, we case-folded all the resulting tokens.
In total, after this tokenization, we retrieved a total of 2,504 unique tokens from 11,578 cookies in our ground truth data.

3.2.2 Manually checking correlation of cookie categories and tokens. Next, to verify the resultant tokens are
meaningful, we divided the names into the four cookie categories as provided by Cookiepedia. We focused on the most
popular tokens for each of our four cookie categories. We present the top tokens in each category from cookies in
Figure 1 via wordclouds. To increase readability we show only tokens from top 100 domains in the figure.

We immediately notice that some particular tokens and token combinations were immensely frequent in cookies from
specific cookie categories. For example, cookie combinations like (gat, gtag) are popular within Targeting/advertising
cookie names. In fact, many popular tokens (e.g., geo, country, location, global) given by the cookie names in
Targeting/advertising categories identify their usage in location tracking. Furthermore, names of third-party trackers
are also frequent in these tokens (e.g., OWOX, Marketo, demdex). Although preliminary, our manual inspection of
tokens gives us confidence that these tokens are correlated with cookie categories and using them as features in a
supervised learning framework has the potential to be successful.
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3.3 Supervised Cookie Categorisation in CookieMonster

3.3.1 Training a classifier for CookieMonster. We model the cookie categorisation as a supervised multi-class
classification problem to predict our four cookie categories—strictly necessary, functionality, performance and
targeting/advertising. Given a cookie name, we extracted the tokens from the names (as mentioned above) and used
them as features. Consequently, we evaluated seven classification algorithms to check the performance and identify
which one to use in CookieMonster . We used the known categorises of cookies (from cookipedia) as our training data.
Specifically, we evaluated Multinomial Naive Bayes (MNB), Softmax Regression (Multi-layer perceptron or MLP),
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Naive Bayes and Binary Search Tree (BST).
We used a 5-fold cross validation with 80-20 split between training and testing data. We used overall (Micro) precision,
recall and F1-score over all-classes to report the accuracy of categorisation for all of the seven models in Table 3.

A
ct
ua

l

Predicted

Nec Perf Func Ad

Nec 486 1 2 140

Perf 2 566 7 16

Func 1 4 195 22

Ad 2 104 6 762

Fig. 2. Confusion matrix of Multinomial Naive
Bayes (MNB). Majority of the misclassification
happened due to Targeting/Advertising cookies.

Algorithm Precision Recall F1 Mean prediction
Latency (ms)

Multinomial Naive
Bayes (MNB)

0.951 0.940 0.9458 0.44

Softmax Regression
(MLP)

0.944 0.948 0.9457 1.29

SVM 0.947 0.867 0.926 0.03
K-Nearest Neigh-
bors (KNN)

0.929 0.907 0.916 3.23

Random Forest 0.886 0.770 0.778 9.73
Naive Bayes 0.798 0.747 0.833 0.02
Binary Search Tree
(BST)

0.649 0.461 0.409 0.05

Fig. 3. Recall, Precision and F-score of for different clas-
sification models to categorise cookies. MNB and MLP
achieved more than 94% average F1-score.

We make two observations from this table: First, the top four algorithms according to F1-score (MNB, MLP, SVM,
KNN) all achieved F1-scores more than 0.9, signifying the utility of our proposed features based on tokenising cookie
names. Second, the top two algorithms (MNB and MLP) both achieved a F1-score of more than 0.94, making them
suitable for use in CookieMonster . To that end, given we envision CookieMonster to be used in the wild for cookie
categorisation, we next check the average categorisation latency for all of these classifiers.

3.3.2 Latency of prediction for classifiers. We present the average prediction latency for predicting the category
of a single cookie during testing in Table 3. We note that, models like Bernoulli Naive Bayes, although extremely fast,
provides a relatively poor F1-score (0.83). To that end, we focused on the top two classification models (MNB and
MLP). These two models, while ensuring an F1-score of nearly 0.95, are quite different in terms of prediction latency. In
fact, MLP has an average prediction latency of 1.2860 ms which is 293% higher than MNB. Therefore, we choose this
pre-trained Multinomial Naive Bayes (MNB) model to use in CookieMonster .

3.3.3 Characterizing Misclassified cookies in MNB classifier. We further did a simple analysis to understand
why MNB model did misclassify a few cookies. We present the confusion matrix for MNB classifier from one fold of
cross validation in Figure 2. This shows that out of 2,016 cookies (our test set in this fold), 316 cookies got misclassified.
However, the majority (244 out of 316) of this misclassification can be attributed to Necessary cookies being predicted
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as Targeting/Advertising and Targeting/Advertising cookies predicted as Performance cookies. We hypothesize two
reasons for this. First, the Targeting/Advertising cookies share similar tokens with other cookie category. Second,
Necessary and Performance cookies might sometimes also act as Targeting/Advertising cookies. We leave exploring
these avenues to future work.

Finally, we note that overall (in spite of some misclassification), the accuracy of this fast MNB-based model is quite
high in our training set (trained over from 11,578 cookies), however it makes a basic assumption—tokens extracted
from a new cookie name will be included into 2,504 tokens that came from 11,578 cookies in our dataset. Clearly, this
assumption might not hold in the wild cookie categorisation and we might encounter out-of-vocabulary tokens, which
CookieMonster will need to address when used in-the-wild.

3.3.4 N-gram-based additional categorisation for cookies with previously unseen tokens. New cookie names
might contain tokens which are not in the list of 2,504 tokens seen in our training dataset of 11,578 cookies. Inability to
categorise these cookies poses a challenge to the categorisation coverage of CookieMonster . This problem is common in
NLP tasks which needs to deal with OOV (out-of-vocabulary) words (thus we will call unseen tokens OOV tokens). To
solve this challenge we designed an additional n-gram based classification for new cookies.

In our approach, a new cookie name (e.g., _bti) with previously unseen tokens is simply divided into the constituent
character n-grams (e.g., _bti can be split into bi-grams [(’b’, ’t’), (’t’, ’i’)]). In our Cookiepedia dataset we noted that 75%
of cookie names have 5 or less characters. So we choose to use 𝑛 = 2, 3 and 4. Next we simply search for these n-grams
within the set of our 11,578 cookie names and create a set of existing cookie names that contain these n-grams (e.g.,
NSC_mc-vsmibti and gati_abtc which matched bigram of _bti). Finally, out of these existing cookie names we choose the
one with the least edit distance with the new cookie name and output the category of that existing cookie as predicted
category of the new cookie. In our example, since edit_distance (_bti, NSC_mc-vsmibti) = 10 and edit_distance (_bti,
gati_abtc) = 6, so we predict category of _bti to be the same as the category of gati_abtc.

3.3.5 Final workflow of CookieMonster. So, to summarize, CookieMonster used cookie names to categorise cookies.
On encountering a cookie name, CookieMonster will run the pre-processing step and identify tokens from the cookie
names. If those tokens exist in the MNB-based pretrained model, then CookieMonster will output the prediction of
MNB classifier. Otherwise, it will use the ngram based additional classifier to find a previously seen token that is
lexically similar to the new unseen token, and will predict the cookie category based on the known tokens. However,
one obvious question is: since CookieMonster primarily uses the Cookiepedia data for its design, can it accurately classify

cookies in-the-wild on websites not catalogued in Cookiepedia? We answer this question affirmatively in the next section.

4 COOKIE CATEGORISATION IN-THE-WILD

CookieMonster gives us a tool to examine a collection of cookies and categorise them into the 4 widely used UK
ICC categories. We first perform a manual verification (§4.1) on websites not included in Cookiepedia, to show that
CookieMonster generalises widely. Then, given that we have a reasonably accurate method to classify cookies beyond
the dataset it is trained and tested on, we ask what proportion of cookies are superfluous to a user’s experience of
websites, looking both at the Top20K websites according to Alexa, and at cookies found in browsers of real users
in-the-wild (§4.2). Finally, we use CookieMonster to quantify the effectiveness of current web privacy measures (§4.3).
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Fig. 4. Cookie Consent Example

Recall Precision F1-score OneTrust OOV(%)
top1-100 0.93 0.87 0.91 2 0
top100-500 0.90 0.86 0.88 3 0.83%
top500-1k 0.83 0.85 0.87 0 1.68%
top1k-10k 0.86 0.93 0.89 2 0
top10k-100k 0.79 0.77 0.78 0 4.61%
top100k-1M 0.74 0.84 0.79 0 6.17%

Fig. 5. Recall, Precision and F1-score of CookieMonster for cookie
recognition across Alexa top-1M websites. OOV is the percentage of
cookies which were not recognised and had to be classified using the
OOV technique (§3.3.4). The OneTrust column identifies the number of
websites in each category using OneTrust GDPR Consent Management.

4.1 Does CookieMonster work in-the-wild? – a manual verification

section 3 demonstrated that cookie names can reveal the purpose and UK ICC category of the cookies. While this was
rigorously tested using 5-fold cross validation on Cookiepedia data, we still need to validate whether the model can
correctly identify the purpose of cookies on websites which have not been catalogued on Cookiepedia. This is not
straightforward, as the purpose of cookies on most websites may not be apparent.

To answer this question, we take advantage of GDPR, which holds in the European Union (and in our UK vantage
point). GDPR requires websites to obtain user consent before collecting data about them. Because of this, it is extremely
common to see websites using consent management banners such as the example shown in Figure 4. As in the figure,
many websites use the UK ICC categories for allowing users to control their consents. Thus, a careful user can control
which categories of cookies are allowed from a given website. With the website in Figure 4, users have to allow
necessary cookies (there is no choice), but may choose to allow additional categories of cookies. For example, one user
may decide to allow necessary and functional cookies. Another user may allow necessary and performance cookies
instead. Clearly other combinations are also possible, including allowing three or all four categories of cookies. This is a
common pattern for consent management in many websites.

We can therefore determine which cookies are in the “necessary” category by visiting the website with a clean
browser (after deleting all cookies and clearing the user profile) and selecting to allow only the necessary cookies. We
can then clear the user’s cookie and profile information again and revisit the website, this time choosing to allow
necessary and functional cookies. The additional cookies installed in this second visit can be inferred to be in the
“functional” category. A similar approach can be used to determine “performance” and “advertising/targeting” cookies.

The above approach is not scalable, but serves to test whether the CookieMonster model “works” beyond the
Cookiepedia data. To this end, we select websites that satisfy two criteria: (i) They are not indexed in Cookiepedia (to
test generalisability of our model). (ii) They have deployed a GDPR consent management solution that allows free
choice among the four UK ICC categories (so that our approach above can be applied on that site). We randomly select
𝑛 = 60 websites satisfying our criteria, choosing 10 each from the Alexa 1-100, 101-500, 500-1000, 1K-10K„ 10K-100K and
100K-1M ranks. We note that much of the Cookiepedia data comes from a database maintained by OneTrust3. Among
the 60 sites we choose, 7 sites do use OneTrust (Figure 5), although these sites are still not indexed in Cookiepedia.
Thus, our manual test verifies generalisability beyond Cookiepedia data to sites with and without OneTrust support.

3https://cookiepedia.co.uk/about-cookiepedia
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(a) Cookiepedia (b) CookieMonster (c) Cookiepedia (ignoring the unrecognised and
uncategorised cookie names)

Fig. 6. Proportions of different cookie categories in Alexa Top20K (shaded) and real browsers (clear), according to
(a) Cookiepedia (b) CookieMonster (c) Cookiepedia (ignoring the unrecognised and uncategorised cookie names)

Figure 5 shows that our model generalises extremely well. As may be expected, the performance is best for the top
ranked Alexa sites (F1 score > 0.85 for the Top10K sites), but even in less popular sites up to Alexa rank 1 Million,
an F1-score of > 0.78 is obtained. For each category of ranks, we also show the proportion of cookies whose names
contained previously unseen tokens and therefore required the OOV technique (§3.3.4) to be used. Most cookies are
recognised within our model and OOV matching is required for less than 6-7% or fewer cookies.

We conjecture that CookieMonster generalises beyond the Cookiepedia data it is trained on because it is based
on cookie names, which are set by the javascript libraries or the third party providers a website uses for targeting,
advertising, analytics etc. The choice of a website to use a particular GDPR consent management platform such as
OneTrust (which impacts inclusion in the Cookiepedia database) is orthogonal to the libraries and third party providers
(and therefore the cookie names) it uses. A few libraries and third party providers dominate the ecosystem in each
country [12]; thus cookie names or the naming pattern n-grams used in CookieMonster generalise across websites.

4.2 What proportion of cookies are actually required for websites to function properly?

Strictly speaking, a user only needs to enable “necessary” cookies (e.g., login or shopping cart cookies). Some may
choose enable “functionality” cookies that personalise a site (e.g., to user’s preferred language or site layout). Arguably,
performance analytics and advertising/targeting cookies benefit the website more than they do the user and do not
need to be enabled. CookieMonster therefore provides a convenient way to quantify how many cookies are superfluous.

We study this systematically in Figure 6, by categorising all the cookies of the Alexa Top20K websites as well as
cookies collected from users of a browser extension we developed and deployed in an earlier study [12], and is currently
being used by over 6000 users. Specifically, in this work we use 44,971 cookies collected between November 2020
to February 2021 from 475 of these users (from 44 countries) who are donating their data. We use two methods for
the categorisation: looking up the cookie name in the Cookiepedia database (Figure 6(a), which presents the same
information as Table 1), and using CookieMonster (Figure 6(b)) to predict a category. As mentioned previously (cf.
subsection 3.1), the Cookiepedia database is fairly incomplete, with over 78% of cookie names either not existing in the
database or not categorised; thus, for the purpose of comparing with CookieMonster , we replot Figure 6(a) by ignoring
these unrecognised and uncategorised cookies and renormalising the remaining cookies as 100%, obtaining Figure 6(c).

Both Cookiepedia (Figures 6(a), 6(c)) as well as CookieMonster (Figure 6(b)) show similar trends: According to
CookieMonster , only 13.05% of cookies are labeled as necessary, and an additional 9.52% are functional. According to
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(a) EasyList + Alexa Topsites (b) EasyPrivacy + Alexa Topsites (c) AdGuard + Alexa Topsites

Fig. 7. EasyList, EasyPrivacy and AdGuard filter 40–80% of advertising third party cookies on Alexa Top20K sites.

Cookiepedia, 5.6% of cookies are labeled as necessary (26.52% after ignoring unrecognised/uncategorised cookies), and
an additional 2.01% are functional (9.52% after ignoring unrecognised/uncategorised). Thus, both methods suggest that
the vast majority of cookies can be removed without affecting user experience.

Interestingly, according to both CookieMonster (Figure 6(b)) and Cookiepedia (Figures6(a), 6(c)), real browsers have a
smaller proportion of necessary cookies and more functional/targeting cookies as compared to Alexa Top20K websites.
This is likely because real users’ browsers have user profiles which are better established, with a browsing history
and long-lived cookies that may have been set months ago, leading to better profiling and more ads/targeting cookies.
In contrast, we collect cookies on Alexa Top20K websites programmatically using Selenium with a fresh user profile
instance for each website, resulting in fewer ad/targeting cookies. Also, our user base is located in different countries
where there may be country-specific third party trackers [12] not visible from our UK vantage point, and therefore not
captured in the Alexa crawl.

4.3 On the effectiveness of current web privacy measures

The previous section suggests that a large proportion of cookies can be eliminated from many websites without affecting
their function. One of the main levers of control that users can employ to achieve this, is to use ad blockers. In addition,
web privacy regulations around the world, such as GDPR, provide varying degrees of support for users to provide
consent or decline different kinds of cookies. We examine their effectiveness below.

4.3.1 Ad blockers. Ad blockers typically work based on dynamically updated lists of third party advertising/targeting
domains that should be blocked. Figure 7 shows how three popular block lists – EasyList, EasyPrivacy and AdGuard
Plus – work on cookies found in Alexa Top20K websites. In addition to a block list, EasyList has a so-called ‘hide’ list of
domains which break if blocked, and therefore, are loaded but not rendered on screen, to improve user experience.
Unfortunately, because the domain is loaded, the user can still be tracked even if the ad itself is hidden. These domains
are therefore shown separately. In general, Ad Guard appears to block a larger proportion of domains than EasyList
or EasyPrivacy, even when counting cookies from hidden domains in addition to the cookies from blocked domains.
We also find that there are more domains to be blocked in real browsers than when visiting Alexa Top20K sites
programmatically. Again, this is likely because of additional targeting and advertising that may tend to be attracted by
more mature user profiles with a continuous browsing history.

Across all the combinations tested in Figure 7, we still find that around 20% (for Ad Guard Plus) to 60% (for EasyList)
of advertising and targeting-related cookies that should have been blocked are not being blocked. This is partly because
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Fig. 8. Occurrence of multipurpose Third-Party domains in Top20K websites.

the lists that ad blockers rely can never be complete. However, when we dig deeper, we on find two additional important
reasons: First, ad blockers are relatively successful at blocking third party advertising and cookies, but we find that a
significant proportion of first party cookies also relate to advertising. Figure 8(a) quantifies this, showing the relative
proportion of targeting cookies and other categories of cookies among both first party cookies and third party cookies.
Thus, several first party cookies may slip through ad blockers. Secondly, we find that both among first parties (Figure
8(c)) and third parties (Figure 8(b)), a non-trivial proportion of advertising-related domains also place other categories
of cookies. Thus, a solely domain-based block list risks either blocking too much, or not covering all the domains that
undertake targeting. The domain-based approach is common among all widely used ad blockers – the diversity of
cookies on the web has thus far made it difficult to take a more granular approach that blocks specific cookies. However,
since CookieMonster appears to provide reasonable predictions of cookie categories based on cookie names, we may use
it as one component of a more sophisticated system that blocks specific cookies. Such approaches can complement other
methods which have utilised the Internet Advertising Bureau’s Ads.txt [9] and other list-based measures to identify ads.

4.3.2 Privacy regulation. A second lever that users have recently obtained is support from privacy-related regulations
in various legal jurisdictions. By far the most comprehensive and well-known of these is the General Data Protection
Regulation (GDPR) in the EU, which introduced the notion of requiring explicit and meaningful consent. Comparable
regulations include the California Consumer Privacy Act (CCPA) which allows users to opt-out of tracking and Brazil’s
Lei Geral de Proteção de Dados (LGPD), which is the most recent of them, and also mandates unambiguous consent
from users before websites can use cookies.

Previously, using a limited cohort of 16 users, we had found that cookie numbers seen by users had not changed
significantly before and after GDPR was introduced [13], implying that users may be choosing the ‘default’ choices
offered by websites, which may not be privacy optimal. Here, we extend this study based on the 475 users of our
extension [12] who are donating data. Specifically, we consider all users within a given privacy jurisdiction (EU,
California or Brazil) and compare the proportions of ad/targeting cookies of users from within that jurisdiction to the
respective proportions in browsers of users outside the jurisdiction. Figure 9 shows that in all cases, there is little
difference between proportions of cookies of users within and out of each of the jurisdictions. This confirms (using a
much larger and more representative user base) our previous finding [13] that users are not making the most privacy
optimal choices for themselves, and may be fatigued the burden of providing consent on every website they visit,
especially as several websites use dark patterns that make it difficult to choose more privacy-oriented settings [23].
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(a) GDPR: EU vs. non-EU (b) CCPA: California vs. non-California (c) LGPD: Brazil vs. non-Brazil

Fig. 9. Proportions of ad/targeting cookies within and outside of 4 jurisdictions with privacy regulations.

5 DISCUSSION AND CONCLUSION

This paper set out to tackle the herculean task of classifying cookies found in-the-wild. We started with data curated on
Cookiepedia, and demonstrated that its coverage was inadequate – its database contained less than 22% of cookies on
Alexa Top20K websites, and less than 15% of cookies found in real browsers. We therefore developed machine learning
models that trained on Cookiepedia data and were also shown to work well (𝐹1 > 0.94) on websites not currently in
Cookiepedia. Our models use lexical features derived from cookie names, suggesting that cookie names generalise well
across websites, perhaps as a result of common web templating infrastructures and libraries, and the prevalence of
common third parties across websites.

We then used the trained models on Alexa Top20K websites as well as anonymised cookies donated to us by 475
users of a plugin we have developed previously [12]. We found that across the 44 countries represented in our dataset,
necessary and functional cookies (the two categories beneficial to the user rather than the website) constitute only
9.79% and 13.35% of all cookies in our active countries. Thus, the vast majority of cookies can be removed without
impacting website functionality or user experience.

Surprisingly we find that privacy regulations such as GDPR in the EU have not made much difference in the numbers
of cookies seen by real users. This indicates that users are not effectively utilising the consent management options
enabled by GDPR. Ad blockers appear to be more effective if used, but mainly focus on advertising cookies. Even among
advertising cookies, a non-trivial proportion is missed because the ad blockers are based on manually curated lists [2]
which need to be continuously updated and because these lists are based on blocking at the level of the domains that
serve up those cookies, rather than on blocking specific cookies. Unfortunately, we also find that many domains set both
non-essential (e.g., advertising or performance) as well as essential (necessary or functional) cookies; thus extreme care
needs to be exercised in blocking of entire domains, to ensure that functionality of the website is not broken as a result.

Thus far, the diversity of cookie names has prevented a more fine-grained approach and continuously updated but
manually curated lists of domains to block have been the main tool for actively restricting tracking and cookies via ad
blockers. We propose that our robust CookieMonster model based on lexical tokens extracted from cookie names can be
used as the basis for sophisticated tools enable automatic rejection of specific cookies belonging to categories that are
not beneficial for users. We intend to develop this idea in future work.
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