
Automated Quality of Service Monitoring for
5G and Beyond Using Distributed Ledgers

Tooba Faisal
King’s College London, UK

Damiano Di Francesco Maesa
University of Cambridge, UK

Nishanth Sastry
University of Surrey, UK

Simone Mangiante
Vodafone Group R&D, UK

Abstract—The viability of new mission-critical networked
applications such as connected cars or remote surgery is
heavily dependent on the availability of truly customized
network services at a Quality of Service (QoS) level that
both the network operator and the customer can agree on.
This is difficult to achieve in today’s mainly “best effort”
Internet. Even if a level of service were to be agreed upon
between a consumer and an operator, it is important for both
parties to be able to scalably and impartially monitor the
quality of service delivered in order to enforce the service
level agreement (SLA). Building upon a recently proposed
architecture for automated negotiation of SLAs using smart
contracts, we develop a low overhead solution for monitoring
these SLAs and arranging automated payments based on
the smart contracts. Our solution uses cryptographically
secure bloom filters to create succinct summaries of the data
exchanged over fine-grained epochs. We then use a state
channel-based design for both parties to quickly and scalably
agree and sign off on the data that was delivered in each
epoch, making it possible to monitor and enforce at run
time the agreed upon QoS levels.

I. INTRODUCTION

5G has become reality, and its key enabler applications
such as low-latency industry control as well as consumer
applications are making their way to the market. For in-
stance, in health, service providers demonstrated distant
remote-operated surgery [1]. Further, in the automotive
industries, the number of 5G-connected cars is expected
to be around 100 million by 2025 [2]. As promises are
being made, prototypes are show-cased and expectations
begin to grow, the real-life adoption of these applications
needs some operational and legal assurance. If the Qual-
ity of Service (QoS) drops during a remote surgery, what
will be the mechanism to pinpoint where the fault lies?
How to deal with a connection drop when a remotely
connected ambulance [1] passes through an area where
there is no connectivity from its usual operator? Such
challenges call for radical changes to present service
provisioning mechanisms.

Previously, we had proposed the notion of Account-
able Just-in-Time (AJIT) allocation of network re-
sources [3] as a novel solution to support the guaran-
teed QoS needs of mission-critical applications. Unlike
current arrangements, where customers and operators
manually negotiate Service Level Agreements (SLAs)

weeks or months in advance and QoS is provided based
on statistical multiplexing, AJIT allows service levels to be
provisioned a few minutes in advance of when connec-
tivity is actually needed using hard resource reservations.
Because these contracts can be negotiated automatically,
the service contract provisions can be for short well-
defined periods (even on the order of minutes), making it
economically viable for operators to provide connectivity
based on hard resource reservations

This just-in-time vision is enabled by automated ne-
gotiation of service levels via parameterised smart con-
tracts. Smart contracts are software codes, installed on
Distributed Ledgers and possess properties which are
essential to create Monitorable and automated SLAs [4].
Operators advertise guaranteed SLAs as smart contracts
with parameters for key performance indicators such as
minimum bandwidth or maximum latency. The price
charged for the service would depend on these param-
eters as well as other operator-specific costs. When the
smart contract is executed, the operator is first queried
whether it has sufficient resources to deliver the re-
quested service. Once the operator indicates it is able
to deliver the service and reserves resources, payment
is immediately taken from the customer and held in
escrow, and the operator is bound to the agreed-upon
service level for the duration negotiated. At the end
of the service engagement, the smart contract checks
whether the operator has upheld the service levels
agreed, and transfers the escrow amount to it. The details
of the architecture is given in another work [5], [3] and
omitted here for space constraints.

Note however that there may be a dispute over
whether the service was rendered at an adequate level,
so the connection needs to be monitored and records
need to be maintained about which packets were de-
livered and at what time. Doing this at so-called ’line
rates’ (maximum possible data rates) of today’s commu-
nication networks is hard. We develop a novel solution
based on dividing the overall contract duration into
small epochs, and creating records over each epoch (§III).

We evaluate the feasibility of this design by asking
the following questions: (i) How long does it take to
set up such smart contract-based SLAs? Can it truly be
“just-in-time”? (ii) What is the overhead of maintain-978-0-7381-3207-5/21/$31.00 © 2021 IEEE

ing per-packet records, and can this sustain reasonable
data transfer rates? We examine these questions in §IV
and show that new connections can be set up within
approximately 5 minutes in a topology that mimics a
national-scale mobile operator. Resources are reserved
by dynamically creating dedicated network slices, and
this helps sustain deliver the requested quality of ser-
vice. Even with the overhead of maintaining per-packet
records in cryptographically secure bloom filters, data
rates of up to 50Mbps can be sustained.

II. RELATED WORK

This work has three major components, 1) Dynamic
Resource provisioning, 2) Smart Contracts/DLT and 3)
Service Level Agreements and Accountability. In this
section we outline the work close to our research.

A. Dynamic Resource Provisioning

We studied Dynamic Resource Provisioning in the con-
text of network slicing. A large amount of work has
been done in proposing network slicing solutions, in-
cluding surveys on challenges and future directions [6],
[7]. Approaches such as [8] propose mechanisms for
dynamic slice reservation, which can be used as drop-
in replacements in our implementation for slice reser-
vation. Sciancalepore [9] also proposes a reinforcement
learning-based 5G Network Slice Broker which uses
admission control based on traffic prediction to ensure
SLA fulfilment in network slices. This can be adapted to
our admission control mechanism. To our knowledge,
this line of work does not discuss accountability and
monitoring of delivered service in real time, which is
our contribution.

B. Distributed Ledger Technology

The choice of DLT is dependent on application re-
quirements and resources available; the demands and
constraints of using DLT are discussed in [10]. A DLT
focused Network Slice Broker, that is, a service broker that
can act as a mediator between the slice provider and the
customer using smart contracts and distributed ledgers
is presented by [11], but this work is solely focused
on the creation of smart contracts from network slice
templates. Blockchain Slice Leasing Ledger, a blockchain
focused assignment architecture for reducing network
slice creation time is presented in [12]. The work closest
to our approach is [13], in which authors advocate
the use of DLT for Network slices sharing among the
Mobile Network Operators(MNOs) and Mobile Virtual
Network Operators(MVNOs). Like us, this work also
advocates admission control; however, they are focused
towards the usage of DLT in the context of operators
bidding for network slices through DLT. None of the
work mentioned above exploit the inherent properties
of smart contracts for accountability, nor do they ensure
continuous monitoring.

C. Service Level Agreements and Accountability
A proof-of-concept blockchain-based Service Level

Agreement (SLA) is presented by [14] conceptualising
usage of blockchain for IoT. [15] also discusses SLAs
in cloud infrastructure, extracting dynamic service level
agreement and translating them to smart contracts.
Scheid et al. [16] discuss smart contract-based automated
compensation mechanisms for SLAs, and also presents
a compensation prototype function but it is unclear how
the monitoring would work and whether it would cope
with today’s line rates.

III. QOS ACCOUNTABLE MONITORING

Our proposal is based on the architecture detailed
in AJIT [5] [3]. Such architecture employs a Just-in-
Time Controller [3] to allocate network resources in a
Just-in-Time fashion. We then exploit a permissioned
DLT to create records of resource provisioning and to
support service contracts as smart contracts deployed
by operators. In our proposed architecture, operators act
as nodes and participate in the consensus of the ledger,
while customers requesting network resources are lim-
ited at sending service request transactions to deployed
contracts through a Distributed Application (DApp).
Service providers advertise their service contracts, and
the customer purchase them through the DApp.

A key goal of our proposal is to allow the customer
and operator to agree on a given level of service at set
up time, and then to monitor and enforce the quality of
the service (QoS) delivered by the operator.

Note that operators will likely charge higher prices for
services with higher QoS constraints, and customers can
choose among the different offers based on the price ad-
vertised for a given QoS needed. As such, it is required to
have a mechanism to clearly flag SLA infringements by
both parties: operators failing to provide the promised
QoS, and customers falsely claiming that a worse-than-
agreed service level was delivered. We say that our QoS
monitoring is accountable if and only if both customer
and operator can independently provide a trustworthy
(i.e., cryptographically unforgeable) certificate showing
the correct QoS history of the service provided so far in
case of no dispute, and neither customer nor operator
can provide a trustworthy certificate showing a false
QoS in case of a dispute. In the following, we assume
that both the customer and operator have an asymmetric
cryptographic key pair, whose public key is known to
each other, and therefore each can sign messages and
verify message signatures for such certificates.

Our model is based on dividing the entire service pro-
vision period into discrete epochs. During each epoch,
a given number of packets are sent by the operator
towards the customer (or vice versa). Both parties can
also exchange acknowledgements and other utility mes-
sages in both directions. For the sake of simplicity, we
consider an SLA in this scenario as the actual set of

packets that the customer and operator both agree has
been sent to the customer by the operator (or vice versa).
Note that this construct can capture or approximate
common service level indicators. For example, from the
actual set of packets, one can compute the number of
packets exchanged during a given epoch, from which the
achieved throughput can be calculated. By using special
‘timer’ packets to delineate small periods into different
epochs, latency can be approximated.

A. Monitoring tools

Each party keeps an independent record of the packets
by maintaining a cryptographic accumulator [17] that
compresses an arbitrary number of packet receipts into
a single fixed length value. We require the accumulator
to be cryptographically secure to avoid participants from
falsely claiming that an element is contained (or not con-
tained) in the accumulator. Do note that an accumulator
allows to prove whether or not an element is contained
in it, without the need to trust the accumulator creator,
the drawback is that we can not efficiently list all the
elements contained in it [17].

For efficiency reasons, we also propose to employ a
state channel [18] for each service agreement. Conceptu-
ally a state channel in a DLT is a private channel between
two entities that agree on an initial commitment, on
incremental updates, and, on the end, on a closure com-
mitment. More precisely, both parties open the channel
with a set up transaction recorded in the DLT, which
specifies the channel state (e.g. how much is initially
owed to each participant in case of payment channels)
and its additional parameters (e.g. its expiration time).
Once this transaction gets accepted in the DLT, the chan-
nel can be used by the participants. To use the channel,
all participants cooperate to create a new transaction
updating the state of the channel. Once such transaction
is well formed, any participant could broadcast it to the
DLT, effectively closing the channel with the new state.
All participants, however, are incentivised to keep such
transaction private. Holding the well formed transaction
is a guarantee to the participants that it can be released
at any point to enforce the current state of the channel,
so the current state is to be considered as equivalent
to being written in the DLT. Once all participants agree
to close the channel, or any participant misbehaves by
refusing to cooperate to create an updated state trans-
action, the honest participants broadcast the last valid
state transaction to the DLT, closing the state channel.
The advantage of using a state channel is threefold:

• Efficiency: the state update transactions are kept
private between the participants, so they are not
dependent on the slow consensus times of the DLT;

• Cost: as only two transactions are ever written in
the DLT for each channel, i.e. the first (set up) and
the last (closure), the associated fees are paid only

Fig. 1: Steps for state-channel based monitoring of QoS

for two transactions independently of the arbitrarily
large number of private state updates;

• Privacy: as all intermediate state updates are kept
private, the state of the channel is only visible to
outside entities when the channel is closed, and only
the final state is visible not any intermediate one.

B. Monitoring protocol

Recall that the operator and customer(s) involved
commit to an SLA for a given price by running a smart
contract. The same smart contract code can set up the
DLT state channel and requisite initial state to monitor
the SLA. The initial state consists of equivalent empty ac-
cumulators on both sides, whose parameters are decided
by the service contract. Whenever the operator forwards
packets to (or receives packets from) the customer, it
records the packets in its accumulator. Likewise, the
customer records in its accumulator all packets received
from or forwarded to the operator. If there is a link
failure (e.g., packet lost due to radio channel interference
in a wireless link, or a link flap in fixed-line network)
both parties are expected to honestly identify this and not
record the lost packet(s). Thus, the accumulator keeps
track of service delivered. For example, the number of
packets added to the accumulator over a time period is a
measure of bandwidth (number of packets/time period).

Service is broken down into epochs, with a part of the
total price and a customisable level of service attached
to each epoch. At the end of each epoch, both parties
compare their accumulators. If the two accumulators
match, the epoch has been successful, and the state is
recorded in the state channel, and can be used for a
future payment. If the accumulators do not match, then
they interrupt the service and start a dispute.

At the end of the last epoch, if no dispute was
launched, the final common accumulator value is used
to close the channel (Figure 1(4a)). The service contract
can then terminate compensating the parties accordingly.
If there was a dispute, i.e., accumulators do not match
at the end of an epoch, the last valid channel state will
be the last common accumulator value at the end of the
previous epoch (Figure 1(4b)). This is then broadcast by
any party to the wider DLT and the state channel is
closed. Since the contract is structured with payments

and service levels for each epoch, it ensures compensa-
tion for the part of service over which there is no dispute.

Note that because the accumulators are cryptograph-
ically secure, they can be treated as a trustworthy rep-
resentation of QoS – it becomes computationally unfea-
sible for either party to add or remove a packet from
their copy of the accumulator whilst still ensuring both
accumulators match. When accumulators match at the
end of any epoch, it protects both participants from
false claims. For example, suppose the customer claims
that they never received a particular packet. This can
be efficiently checked by querying whether the packet
is in either of the two matching accumulators. If the
packet is in the accumulator, the customer is lying, as
it must have been sent by the operator. If it is not in
the accumulator, it was never sent by the operator, so
the operator is lying. Note that such claim verification
can be performed by any third party, with no further
information on the service levels.

We remark that the accumulator choice is a key aspect
of the proposal feasibility. Each packet needs to be
recorded in the accumulator, and thereby it becomes a
limiting factor for overall performance. We use Secure
Bloom Filters (SBF) [19] as cryptographic accumulators
as they outperform traditional accumulators, in terms of
operations speed [20] (see §IV).

C. Considerations

Our monitoring protocol ensures that a dispute can
only jeopardise the last epoch of service provision,
without invalidating the QoS measurements up to that.
Moreover, the service is halted in case of a dispute; this
means that both operator and customer can only attempt
to get an unfair gain on the last epoch they are willing
to receive/serve. This implies that, even if we can not
pinpoint responsibility on a misbehaving entity, we can
still mitigate the practical effectiveness of misbehaviour
in general. Service contracts can employ a decreasing
neutral penalty scheme on the length of the service, to
disincentive misbehaviour. As all service is verifiably
paid as intended for all epochs except, in the worst case,
the final epoch, operators can price such risk inside their
service offers in advance.

The above protocol can also be strengthened depend-
ing on the use case. As an example, Trusted Execution
Environments (TEE) [21] can be employed to add the
guarantee that customers can only consume packets they
admit to have received. If we have a TEE trusted by the
operator and deployed on the customer device, then the
operator can encrypt each packet before sending it to
the customer. Only the TEE is capable of decrypting a
packet, so the user is forced to send all packets they want
to consume to the TEE first. In this scenario it would
be the TEE to manage the accumulator on the customer
side. The TEE decrypts and adds to the accumulator
all packets that it receives before sending them in clear

to the customer. This implies that consuming a packet
and adding it to the accumulator are considered as a
single joint atomic operation from the customer point of
view, preventing them from consuming packets without
adding them to the accumulator. Such higher level of
security for the operator comes at a price. Encrypting
and decrypting packets adds to the packet processing
latency, and the requirement to deploy and run a TEE
on customer devices may hamper deployability. This
limits such examples to application scenarios where the
advantages outweigh the costs. However, it shows how
it would be possible to have customisable security levels,
for higher premiums, on different service offers depend-
ing on the application needs, on top of our universal
basic QoS monitoring protocol.

IV. IS JUST-IN-TIME POSSIBLE?

We evaluate the viability of our proposal on top of
a topology (Figure 2(a)) that mimics in Mininet [22] a
simplified version of the topology of a major mobile
operator in the UK. To send instructions to the Mininet-
emulated switches we built a Just-in-Time Controller
atop Ryu Controller [23], which works in collabora-
tion with a SQLlite database. The Ryu Controller is a
Software Defined Networking (SDN) framework, which
allows monitoring and commanding network switches.
The database keeps a record of the path assignment
and available capacity of the network and updates the
controller on-demand.

The incoming traffic in both the approaches is divided
into three service types: two queues are prioritised by 20
and 10 Mb/s minimum bandwidth, and the rest of the
traffic is directed towards a standard queue, that is “Best-
effort” without any minimum service level requirement.
We present our results in Figure 2(b). This clearly shows
that without admission control, all classes of traffic start
to contend with each other, and goodput suffers as
a result. All three classes achieve only about 6Mbps,
regardless of whether they asked for 20Mbps, 10Mbps or
Best Effort (different best effort flows achieve different
goodput, as shown by the box plot, but the median
throughput remains close to 6Mbps. In contrast, with JIT-
RA and admission control that does not admit new cus-
tomers when resources cannot be reserved, the service
types which request 20 and 10Mbps obtain close to their
requested goodput. This clearly establishes the expected
result that just creating a network slice is not sufficient,
and admission control and careful resource reservation are
required to ensure a given service level requirement is met.

However, setting up a network slice and reserving
resources comes with an overhead. Figure 2(c) shows
a Cumulative Distribution of the time taken to setup
and reserve resources over 350 service contracts with
varying background service load. Both the mean and
median are below ≈ 5 minutes. Conversations with a
major UK mobile operator confirm that it is a realistic

(a) (b) (c)

Fig. 2: a) Simulation Topology b) Goodput achieved by 1) Without Admission Control(AC) and 2) Just-in-Time (JIT) with
Admission Control(AC) c) Resource reservation with Just-in-Time approach

expectation. Thus “just in time” resource reservation and
network slice set up can happen on the order of a few minutes.
Practically, slice-setup can be avoided operators follow
a “Blue-print” approach, by grouping similar resource
requests together and assigning them to a pre-configured
set of network functions.

Apart from the time it takes to reserve network re-
sources and set up a custom network slice to meet a
given service level requirement, a smart contract has
to be executed to record the agreed upon service con-
tract, which will add to the set up time. To test this
overhead, we deployed contracts through Hyperledger
Burrow [24] on a local Hyperledger Fabric node running
on a Ubuntu 64-bit, 16.04.7 virtual machine with 4.096
GB of RAM, and a 2.3 GHz Dual-Core Intel Core i5
processor. Figure 3(c) shows that the mean deployment
time of a new service contract is 123ms and the average
invocation time for a new service request is 119.64 ms,
a negligible overhead in comparison with the several
minutes taken to reserve network resources and setup
network slices. In summary, smart contracts add negligible
(few milliseconds) overheads to the overall time for setting up
just-in-time resource reservation and service contracts, and
the full service contract can be put in operation on the order
of a few minutes.

After set up, the main constraining factor while the
service contract is running is the overhead of main-
taining per-packet records in accumulators. We adopt
Secure Bloom Filter-based (SBF) accumulators, because
of their efficiency as compared to their counterparts (i.e.
cryptographic accumulators). We compare the perfor-
mance of such accumulators with a more traditional RSA
accumulator. Both accumulators are evaluated in two
different compute infrastructures, meant to represent
different kinds of customers. The first is a server-based
customer, represented by an Intel Xeon CPU E5-2660
(2.60 GHz with 20 cores) and 94G RAM. The second is
a more constrained customer (e.g., an IoT deployment),
with Raspberry Pi Virtual Machine (1.5 GHz processor)
with 8G RAM.

The primary constraint for QoS monitoring is the time

required by resource limited devices to add packets to
accumulators. Hence, we compared the add operations
in both the SBF and RSA Accumulators using implemen-
tations from [25] for SBF, and [26] for RSA Accumulators.
To each accumulator, we added 64-byte packets one at a
time for 1000 iterations. Note that for a given amount
of data to be transferred, using small (64 byte) sized
packets lead to a larger number of packets, and therefore
represents the worst case upper bound for overheads.

We present our results in Figure 3(a) and 3(b). It can
be seen that SBF is orders of magnitude faster than RSA
accumulators. In fact, SBF only adds a few milliseconds
of additional packet processing latency whereas adding
each packet to an RSA accumulator takes several sec-
onds, making the RSA accumulator completely infeasible
for our use case. We also note that even the SBF benefits
from the superior compute power of the server, which
can add a packet to the SBF in one tenth the time it
takes to add a packet in the Raspberry Pi.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a method for automated
monitoring of Quality of Service in an ongoing connec-
tion as a foundation for accountable network services.
We believe accountability based on hard resource reser-
vations is a key-enabler for 5G and beyond “mission-
critical” services such as remote surgery or connected
cars. A primary obstacle to hard resource reservation has
always been the expense involved when resources have
to be reserved for long periods of time over which a
Service Level Agreement (SLA) is in force. We advocate
a radically different alternative – to replace manual
negotiation of SLAs with automated service provisioning
using smart contracts running on Permissioned Ledgers
to ensure a sustainable number of transactions. Our
evaluation shows that it takes the order of a few minutes
to set up a network slice and make hard resource reser-
vations, showing that customers can request resources
“just in time”, i.e., just before they need the service, and
also for a well defined short duration when they actually
need to transfer data. This approach allows operators

(a) (b) (c)

Fig. 3: Accumulator experimental evaluation for 1000 records. Cumulative Distribution Function (CDF) of single add operation
on a) Secure Bloom Filter and b) RSA Accumulator. Note that, in a) the data is capped at 0.6 ms and in b) it is capped at 60 s to
enhance readability. The maximum value in a) is ≈ 0.09 ms and ≈ 12.05 ms for the Server and Raspberry Pi respectively; and
in b) the maximum value is ≈ 17.19 s and ≈ 261.66 s for the Server and Raspberry Pi respectively.c) Installation and Execution
time of Smart Contracts on Hyperledger Fabric

to check whether they are able to commit to a partic-
ular service level request, and make hard guarantees
based on resource reservations and an understanding
of currently available capacity. We also showed how
the agreed upon service levels can be monitored and
enforced at run time, with acceptable overheads, by
keeping per-packet records of the data transfer using
cryptographically secure Bloom Filters.

This study embarks in a new era of network service
provisioning, where accountability is of prime impor-
tance. We next aim to extend this work and explore
the economic aspects in this context. In particular, our
approach allows “Just-in-Time” pricing of network con-
tracts to maximise operators’ profits and customers’ wel-
fare while being cognizant of network neutrality issues.

REFERENCES

[1] S. Baggioni, “Remote Surgery, Robotics and more - how 5G
is helping transform healthcare,” https://bit.ly/3oyCqKu, 2019,
[Online; accessed 06-Oct-2020].

[2] Ericsson, “Connected Vehicles,” https://bit.ly/2II4YC4, 2019,
[Online; accessed 06-Oct-2020].

[3] T. Faisal, D. Di Francesco Maesa, N. Sastry, and S. Mangiante,
“AJIT: Accountable Just-in-Time Network Resource Allocation
with Smart Contracts,” in Proceedings of the ACM MobiArch 2020,
pp. 48–53.

[4] A. Sahai, V. Machiraju, M. Sayal, A. Van Moorsel, and F. Casati,
“Automated SLA monitoring for web services,” in International
Workshop on Distributed Systems: Operations and Management.
Springer, 2002, pp. 28–41.

[5] T. Faisal, D. Di Francesco Maesa, N. Sastry, and S. Mangiante,
“How to request network resources just-in-time using smart
contracts,” in 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC).

[6] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Scian-
calepore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega
et al., “Network Slicing to Enable Scalability and Flexibility in 5G
Mobile Networks,” IEEE Communications magazine, vol. 55, no. 5,
pp. 72–79, 2017.

[7] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Net-
work Slicing in 5G: Survey and Challenges,” IEEE CommMag,
vol. 55, no. 5, pp. 94–100, 2017.

[8] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From Net-
work Sharing to Multi-Tenancy: The 5G Network Slice Broker,”
IEEE Communications Magazine, vol. 54, no. 7, pp. 32–39, 2016.

[9] V. Sciancalepore, X. Costa-Perez, and A. Banchs, “RL-NSB: Rein-
forcement Learning-Based 5G Network Slice Broker,” IEEE/ACM
Transactions on Networking, vol. 27, no. 4, pp. 1543–1557, 2019.

[10] K. Wüst and A. Gervais, “Do you need a blockchain?” in 2018
IEEE CVCBT, pp. 45–54.

[11] B. Nour, A. Ksentini, N. Herbaut, P. A. Frangoudis, and
H. Moungla, “A Blockchain-Based Network Slice Broker for 5G
Services,” IEEE Networking Letters, vol. 1, no. 3, pp. 99–102, 2019.

[12] J. Backman, S. Yrjölä, K. Valtanen, and O. Mämmelä, “Blockchain
Network Slice broker in 5G: Slice Leasing in Factory of the Future
Use Case,” in 2017 IEEE Internet of Things Business Models, Users,
and Networks, pp. 1–8.

[13] M. A. Togou, T. Bi, K. Dev, K. McDonnell, A. Milenovic,
H. Tewari, and G. Muntean, “A Distributed Blockchain-based
Broker for Efficient Resource Provisioning in 5G Networks,” in
2020 IWCMC, pp. 1485–1490.

[14] A. Alzubaidi, E. Solaiman, P. Patel, and K. Mitra, “Blockchain-
based SLA Management in the Context of IoT,” IT Professional,
vol. 21, no. 4, pp. 33–40, 2019.

[15] R. B. Uriarte, R. De Nicola, and K. Kritikos, “Towards Distributed
SLA Management with Smart Contracts and Blockchain,” in 2018
IEEE CloudCom, pp. 266–271.

[16] E. J. Scheid, B. B. Rodrigues, L. Z. Granville, and B. Stiller,
“Enabling Dynamic SLA Compensation Using Blockchain-based
Smart Contracts,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 53–61.

[17] N. Fazio and A. Nicolosi, “Cryptographic accumulators: Defini-
tions, constructions and applications,” 2002.

[18] S. Dziembowski, S. Faust, and K. Hostáková, in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949–966.

[19] Z. Li and G. Gong, “On data aggregation with secure bloom filter
in wireless sensor networks,” Technical Report, Dept. of Electrical
and Computer Engineering, 2010.

[20] A. Kumar, P. Lafourcade, and C. Lauradoux, “Performances of
cryptographic accumulators.”

[21] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution
Environment: What it is, and What it is Not,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1, pp. 57–64.

[22] Mininet, “Mininet: An Instant Virtual Network on your Laptop,”
http://mininet.org/, 2020, [Online; accessed 20-Nov-2020].

[23] R. Controller, “Ryu SDN Framework,” https://ryu-sdn.org/,
2020, [Online; accessed 20-Nov-2020].

[24] HyperLedger, “Burrow,” https://bit.ly/3nmcukT, 2020, [Online;
accessed 12 Dec 2020].

[25] A. Kumar, “Python Bloomfilters,” https://bit.ly/37Q3s9r, 2014,
[Online; accessed 06-Oct-2020].

[26] O. Leiba, “RSA Accumulators,” https://bit.ly/3oKEb7d, 2019,
[Online; accessed 06-Oct-2020].

