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Abstract—IoT-driven smart societies are modern service-
networked ecosystems, whose proper functioning is hugely based
on the success of supply chain relationships. Robust security is
still a big challenge in such ecosystems, catalyzed primarily by
naive cyber-security practices (e.g., setting default IoT device
passwords) on behalf of the ecosystem managers, i.e., users
and organizations. This has recently led to some catastrophic
malware-driven DDoS and ransomware attacks (e.g., the Mirai
and WannaCry attacks). Consequently, markets for commer-
cial third party cyber-risk management services (e.g., cyber-
insurance) are steadily but sluggishly gaining traction with the
rapid increase of IoT deployment in society, and provides a
channel for ecosystem managers to transfer residual cyber-risk
post attack events. Current empirical studies have shown that
such residual cyber-risks affecting smart societies are often heavy-
tailed in nature and exhibit tail dependencies. This is both, a
major concern for a profit-minded cyber-risk management firm
that might normally need to cover multiple such dependent
cyber-risks from different sectors (e.g., manufacturing, energy)
in a service-networked ecosystem, and a good intuition behind
the sluggish market growth of cyber-risk management prod-
ucts. In this paper, we provide (i) a rigorous general theory
to elicit conditions on (tail-dependent) heavy-tailed cyber-risk
distributions under which a risk management firm might find
it (non)sustainable to provide aggregate cyber-risk coverage
services for smart societies, and (ii) a real-data driven numerical
study to validate claims made in theory assuming boundedly
rational cyber-risk managers, alongside providing ideas to boost
markets that aggregate dependent cyber-risks with heavy-tails. To
the best of our knowledge, this is the only complete general theory
till date on the feasibility of aggregate cyber-risk management.

Index Terms—aggregate cyber-risk, heavy-tail, tail-dependency

I. INTRODUCTION

IoT-driven smart cities are examples of service networked
ecosystems that are popularly on the rise around the globe,
with major cities like Singapore, Dubai, Barcelona, and Am-
sterdam being working examples. The proper functioning
of such cities is hugely based on the success of supply
chain relationships from diverse sectors such as automobiles,
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electronics, energy, finance, aerospace, etc. In the IoT age,
these relationships are often realized via large scale systemic
network linkages (see Figure 1.1. in [1]) that operate via the
interplay of IoT hardware (e.g., sensors, actuators, cameras),
application software (e.g., Oracle for DBMS support, cloud
service software), and IoT firmware.

Currently, robust IoT security is a challenge [2] with a
significant fraction of users controlling IoT systems being
naive about effective cyber-security practices (e.g., the use of
non-default device passwords, periodic patch updates). Conse-
quently a cyber-attack exploiting a software vulnerability can
have a catastrophic cascading service disruption effect that
could amount to losses in billions of dollars across various
service sectors. Recent examples of such cyber-attacks include
the Mirai DDoS (2016), NotPetya ransomware (2017), and
WannaCry ransomware (2017) attacks, which wrecked havoc
among firms in various industries across the globe, resulting
in huge financial losses due to service interruption (see [1]
for more examples). As a result of such large losses, a certain
section of society overall could be negatively impacted and
experience psychological depression and affected lifestyles.

As instruments to cover cyber-losses in society, markets
for commercial third-party services (e.g., cyber-insurance) are
steadily but sluggishly gaining traction with the rapid increase
of societal IoT deployment, and provides a channel for mem-
bers (individuals and organizations) to transfer residual cyber-
risk post cyber-attack events. The primary benefits of com-
mercial cyber-loss management services have been recently
cited in detail by the authors in Biener et.al. [3], and include
(i) indemnification of loss events, (ii) helping corporations
estimate cost of cyber-risk, and (iii) improve cyber-security
[4][5][6][7]. The steady rise in market requirement for such
services primarily arises from a combination of (a) the naivety
of user security practices, (b) the non fool-proof nature of
technical security solutions to remove cyber-risk [8], (c) higher
board level concerns in organizations post notable cyber-
breach incidents (e.g., Sony, Target, WannaCry) and their
negative effect on stock prices [9] [10], and (d) the growing
perception of cyber-risk in the digital society [11].

Despite the promised potential for commercial cyber-risk
management services, the markets have been too sluggish
for our liking. The yearly estimates of cyber-loss approxi-
mately amount to USD 600 billion globally (1% of US GDP)
[1], whereas the cumulative global public and private sector
spendings on cyber-security amount only to USD 174 billion
[12]. In addition, the total yearly market for cyber-insurance
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services - the most popular form of commercial third party
commercial cyber-risk management offerings, approximates to
a paltry USD 6 billion globally [12], compared to the amount
of net cyber-loss. The primary reasons for such a low (but
increasing) market penetration are (a) misunderstanding and
lack of coverage awareness by the demand side (users and
organizations) [12], (b) unavailability of quality plus quantity
data on cyber-risks and demand side cyber-hygiene behavior,
that contribute to policy pricing nuances [13] [14] [12], and
(c) the empirical evidence of certain cyber-risk distributions
being heavy-tailed and tail-dependent [3] [15] [16] [17], that
makes profit-minded risk-averse cyber-insurers go low on
confidence to expand coverage markets, where coverage is on
an aggregate sum of such heavy-tailed cyber-risks.

A. Research Motivation

It is obvious that the ushering pervasive IoT age with 100s
of IoT devices per home/organization will bring forth the
need for businesses and homes to increasingly buy coverage
CRM solutions like cyber-insurance. This is simply because
the cyber-attack space will be broad enough in the digital
terrain for humans to always prevent being security-hacked
by smart adversaries. As a result, any coverage CRM solution
provider will face aggregate cyber-risks from its clients. The
idea of spreading aggregate cyber-risk among multiple risk
managers (e.g., cyber (re)insurers) is gaining traction [1] [18]
[19] for IoT-driven smart society settings whereby insurers
covering aggregate cyber-risk of organizations in a given sector
(e.g., manufacturing) wish to spread that risk among insurers
of firms that are higher up in the supply chain (e.g., energy
companies). However (a) there is no formal analysis on the
effectiveness of this idea for general individual cyber-risk
distributions, and (b) there may be significant differences in
the cyber and non-cyber re-insurance settings - benefits of
non-systemic outcomes in the latter (as qualitatively stated in
[18]) may not apply to the former (see Section IV for more
details). Consequently, without a formal analysis, aggregate
cyber-risk managers may not have the confidence to scale
their service markets [20]. Our main goal in this paper is to
devise a foundational methodology that analyzes the effect of
individual heavy-tailed and tail-dependent cyber-risks on the
effectiveness of aggregate cyber-risk management markets.

B. Research Contributions

We make the following research contributions in this paper.
1) We prove that spreading catastrophic heavy-tailed cyber-

risks that are identical and independently distributed
(i.i.d.), i.e., not tail-dependent, is not an effective prac-
tice for aggregate cyber-risk managers. However, spread-
ing i.i.d. heavy-tailed cyber-risks that are not catas-
trophic is an effective practice for aggregate cyber-risk
managers. While this latter point has long been believed
and empirically validated in the cyber-insurance research
literature, the former point is a surprising new facet that
we unravel in this paper via theory (see Section II).

2) We prove that spreading catastrophic and curtailed
heavy-tailed cyber-risks that are (non) identical and

independently distributed (i.i.d.), i.e., not tail-dependent,
is not an effective practice for aggregate cyber-risk
managers. (see Section III).

3) We show that spreading catastrophic and tail-dependent
heavy-tailed cyber-risks is not an effective practice for
aggregate cyber-risk managers. Though this result has
been empirically established in the past for some heavy-
tailed distributions (and also somewhat intuitive from
the results of Section II), there exists no formal proof
for general heavy-tailed cyber-risk distributions, leave
alone catastrophic heavy-tailed distributions (see Sec-
tion IV).

4) We experimentally validate our theory using a real-
world cyber-breach data set by (a) relaxing the constraint
of dealing with stable heavy-tailed cyber-risk distribu-
tions (see online Appendix A for details ) needed for
tractable analyses (as in Sections II, III, IV), and (b)
assuming risk managers to be boundedly, i.e., not be
perfectly rational in interpreting the extent of cyber-risk,
as is usual in practice (see Section V).

Our proposed research presents a foundational methodology
to analyze the effectiveness of spreading catastrophic heavy-
tailed and tail-dependent cyber-risks. To the best of our
knowledge, this is the only complete general theory till date
on the feasibility of aggregate cyber-risk management, and
is invariant of specific threat models that eventually induce
cyber-risk distributions. Though the empirical occurrence of
catastrophic cyber-risks is uncommon, it is a matter of time we
start encountering them relatively more frequently in the IoT
age (see Chapters 1.2, 1.3 in [1]). A basic primer of important
statistical and econometric concepts used in the paper is pro-
vided in online Appendix A, and a table of important notations
in the paper is presented in Table I.

C. Contribution Impact on Society and Technology

Our research contributions stated thus far are primarily
targeted towards the advancement in the economics and econo-
metrics of cyber-risk management in the IoT age through
the solution of open research issues - the main focus of
our research. However, each of these contributions have a
direct impact on IoT security improvement, and its consequent
positive impact on society.

To start with, according to data sources, the global number
of connected devices has already reached 22 billion at the end
of 2018 - more than half of which belong to enterprise IoT
[21], and will grow to 29 billion by 2022 [22]. Moreover,
worldwide spending on IoT is projected to reach a signifi-
cant 1.2 trillion USD by 2022 with the number of Internet-
connected devices being projected to reach a whopping 125
billion by 2030 [23]. A thing common to nearly all IoT
devices is the poor cyber-hygiene associated with their use
(e.g., default passwords) - a primary reason being the scale
of such devices in operation and the disproportionate human
effort (that is likely to continue) needed to strengthen basic
security in such devices [1]. This increasingly becoming
common knowledge would push organizations and individual
households to consider investing in third-party cyber-risk

https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
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management (CRM) solutions as a necessary risk management
step in the upcoming pervasive IoT age.

Contribution #1 states that cyber-risk “buyers” (i.e., the
CRM firms) need to develop regulated pricing policies for
their CRM solutions. These solutions will enable end-users
to voluntarily (incentive compatibly) “look after” to a con-
siderable degree, the security hygiene (and hence cyber-risk
exposure) of IoT devices under their control. Consequently,
such steps will prevent each end-user (individual household or
organization) to be a source of a cyber-risk distribution that is
heavy-tailed, i.e., catastrophic. This will allow CRM solution
markets to scale and flourish, and improve cyber-security in
society. Contribution #2 reflects the same things for the CRM
solution buyers as that from Contribution #1, but additionally
warns the ‘risk-buyer’ side to put increasing focus on pricing
policies that prevent IoT-controlled sources (organizations or
individual households) to be a root of catastrophic cyber-
risk distributions. The increased focus needed due to the fact
that statistical curtailement of such cyber-risks (unlike that in
Contribution #1) will also not allow CRM markets to scale
and flourish - thereby having a negative effect on society as a
whole. Contribution #3 reflects similar learnings for both the
CRM solution provider and the buyer sides, as that from Con-
tributions#’s 1 and 2. Contribution #4 clearly states that when
CRM solution providers suffer from practical and subjective
behavioral biases in appropriately assessing cyber-risk extent
[1], it should not aggregate cyber-risk of catastrophic nature -
thereby implying, similar to that in Contribution #’s 1-3, that
solution pricing policies should be designed in a way so as
to incentivize CRM solution buyers to invest enough efforts
in cyber-security so as not to be a source for catastrophic
cyber-risks. Finally, while appropriate CRM pricing policies
might ‘nudge’ the demand side to improve their cyber-hygiene,
all the contributions together indicate the important role of
regulators (e.g., the government) to regulate the enforcement
of improved security strength in factory settings of IoT devices
during/post manufacturing. This will mitigate (a) the negative
effect of human “laziness” towards improving cyber-hygiene,
and (b) the chances of society dealing with catastrophic risks.

II. (CATASTROPHIC) IID CYBER-RISK AGGREGATION

One of the key features of risk management (CRM) (e.g.,
via insurance) in general as a business model is its ability to
pool different types of risks, thereby reducing an underwriter’s
overall risk exposure. This is particularly true for a reinsurer
(not necessarily a cyber re-insurer) , who is in a position to
significantly diversify its risks, by selling reinsurance con-
tracts to very different front-line insurers who specialize in
different sectors (e.g., retail, pharmaceutical, manufacturing,
etc.), primarily independent of one another. This means that
a reinsurer typically takes on or aggregates a fraction of
many different risks that are most likely to be independent
of one another. However, this independence property may
not hold true of some cyber-risks. In Section II & III, we
make a simplistic assumption that cyber-risks aggregated by a
aggregate cyber-risk manager are independent, and leave the
analysis of tail-dependent cyber-risks for Section IV. Specif-
ically, in this paper we will often consider the average of

n (dependent or independent) cyber-risks X1, · · · , Xn arising
from different IoT-driven organizations in a smart society,
given by Zw = 1

n

∑n
i=1Xi, or more generally, the weighted

average given a fraction of each cyber-risk w = [w1, · · · , wn]:
Zw =

∑n
i=1 wiXi. In what follows, in this section we

will first examine, for increasing cyber-risk spread (variance),
the distribution resulting from aggregating catastrophic cyber-
risks, whose first and second moments are undefined. We will
then generalize this result and examine the standard VaR risk
measure (see online Appendix A for a definition and a valid
rationale for using the VaR metric) as a result of aggregating
n cyber-risks (catastrophic or otherwise).

Symbol Description
V aRq(X) Value-at-Risk (VaR) of X at level q
Sα(σ, β, µ) stable and heavy-tailed distribution characterized by

the index of stability α, scale parameter σ, symmetry
index β, and location parameter µ

CS(r) class of symmetric distributions that are convolutions
of Sα(σ, 0, 0) distributions with r ≤ α < 2 and
σ > 0

CS(r) class of symmetric distributions that are convolutions
of Sα(σ, 0, 0) distributions with 0 ≤ α < r and
σ > 0

CSLC class of symmetric distributions that are convolutions
of symmetric distributions that are either log-concave
or stable with exponent α > 1

Zw aggregated risk with weights w and risk portfolio
X1, · · · , Xn, such that Zw =

∑n
i=1 wiXi

a length of support of a probability distribution

TABLE I: Table of Notation

A. An intuitive observation

To give some intuition, we begin with a simple comparison
of risk spread (standard deviation) between aggregating light-
tailed distributions and heavy-tailed distribution. Consider the
Normal distribution as a representative of the former and the
Levy [24] and the Cauchy distributions as representatives of
the latter that are statistically stable[25]; the latter exhibit
power-law decay with cdf given by F (−x) ≈ x−α, x, α > 0.
For n IID normal X1, · · · , Xn ∼ N (µ, σ2), their average
1
n

∑n
i=1Xi is also normally distributed with N (µ, 1

nσ
2). The

implication here is that the aggregate risk has a spread (the
standard deviation) that grows as

√
1
n of σ for a given µ,

suggesting a decrease in average risk as one spreads over an
increasing number of individual risks. Thus in this case higher
diversification – the spreading over larger pool of risks – is
desirable.

Now consider the Levy distribution denoted by L(µ, σ),
with location parameter µ, scale σ, pdf and cdf is respectively
given by

φ(x) =

{ √
σ
2π e

−σ
2(µ−x) (µ− x)

−3
2 if x < µ,

0 if x ≥ µ,

F (x) =

 2√
π

∫ −σ√
2(µ−x)

0 e−t
2

dt if x < µ,

1 if x ≥ µ.

A simple algebraic manipulation will suggest that for IID
X1, · · · , Xn ∼ L(µ, σ), we have 1

n

∑n
i=1Xi ∼ L(µ, nσ). In

other words, contrary to the normal case, the risk spread as a
result of aggregating Levy distributions increases linearly in

https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
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the number of individual risks for a given µ. This suggests
that risk aggregation in this case is undesirable.

As another example, consider the Cauchy distribution de-
noted by G(µ, σ), with location parameter µ and scale σ, pdf
given by

φ(x) =
1

πσ

1

1 +
(

(x−µ)2

σ2

) ,
and the corresponding cdf given by

F (x) =
1

2
+

1

π
tan−1

(
x− µ
σ

)
.

Again, standard results suggest that for IID X1, · · · , Xn ∼
G(µ, σ), we have 1

n

∑n
i=1Xi ∼ G(µ, σ), meaning that the

spread of the aggregate risk is unchanged from the individual
risk spread. So in this case risk aggregation does not bring
risk reduction benefit; it is neither desirable nor undesirable.

The above suggests that the notion of spreading risks is
sound when the underlying individual risks are light-tailed, but
casts doubts on the wisdom of doing so when the underlying
risks are heavy-tailed. In the remainder of this section we
formally establish this result using the VaR risk measure.

B. Aggregating IID catastrophic cyber-risks

We first consider aggregating IID risks Xi from the family
CS(1), which are class of distributions that are convolutions of
symmetric and stable distributions with characteristic exponent
α < 1 - those exhibiting an infinite mean and variance, and
representing catastrophic cyber-risks (see online Appendix A
for details). We have the following result regarding VaR
performance post cyber-risk aggregation, the proof of which
is in online Appendix B .

Theorem 2.1: Consider IID r.v’s Xi ∼ CS(1), i = 1, · · · , n,
q ∈ (0, 1), and n-vector of weights w, v ∈ Rn

+. Then

1) V aRq(Zw) > V aRq(Zv) if v ≺ w and v is not a per-
mutation of w; in other words, the function V aRq(Zw)
is strictly Schur-concave in w ∈ Rn

+.
2) In particular, V aRq(Zw̄) < V aRq(Zw) < V aRq(Zw),
∀w ∈ In such that w 6= w and w is not a permutation
of w̄.

Theorem Implications - On a practical note, the theorem
simply implies that when an aggregate cyber-risk covering
agency is faced with covering independent and identical catas-
trophic cyber-risk distributions, the variance of the combined
distribution increases with the number of piled up cyber-risks
- simply a dampening signal for-profit cyber-risk managers to
contribute to a sustainable aggregate loss coverage market.

Now consider the special borderline case α = 1 (borderline
catastrophic), which corresponds to IID X1, · · · , Xn with a
symmetric Cauchy distribution S1(σ, 0, 0). In this case, we
have for all w = (w1, ....., wn) ∈ In, Zw =

∑n
i=1 wiXi =d

X1. Consequently, V aRq(Zw) = V aRq(X1) is independent
of w and is the same for all portfolios of risk Xi with weights
w ∈ In. In other words, in such a case variations in a
portfolio has no effect on riskiness of its aggregate return.
Thus, the symmetric Cauchy distribution with characteristic

exponent α = 1 is the boundary between extremely heavy-
tailed distributions (for which aggregate coverage is statisti-
cally not incentive compatible) with infinite first moments,
and moderately heavy tailed distributions with finite first
moments (aggregate coverage might be sustainable). Similarly,
for general weights w = (w1, ...., wn) ∈ Rn

+, α = 1 implies
Zw =

∑n
i=1 wiXi =d (

∑n
i=1 wi)X1. Thus, V aRq(Zw) =

(
∑n
i=1 wi)V aRq(X1) is independent of w so long as

∑n
i=1 wi

is fixed. Consequently, V aRq(Zw) is both Schur-convex and
Schur-concave in w ∈ Rn

+ for IID Xi ∼ S1(σ, 0, 0).

C. Aggregating IID non-catastrophic cyber-risks

We now consider aggregating IID risks Xi from the family
CSLC, which are class of distributions that are convolutions
of symmetric distributions that are either log-concave or stable
with exponent α > 1 - those exhibiting finite mean and vari-
ance, and representing non-catastrophic heavy-tailed cyber-
risks (see online Appendix A for details). We have the next
result regarding VaR performance post cyber-risk aggregation,
the proof of which is in online Appendix B .

Theorem 2.2: Consider IID r.v’s Xi ∼ CSLC, i = 1, · · · , n,
q ∈ (0, 1), and n-vector of weights w, v ∈ Rn

+. Then

1) V aRq(Zw) < V aRq(Zv) if v ≺ w and v is not a per-
mutation of w; in other words, the function V aRq(Zw)
is strictly Schur-convex in w ∈ Rn

+.
2) In particular, V aRq(Zw) < V aRq(Zw) < V aRq(Zw),
∀w ∈ In such that w 6= w and w is not a permutation
of w̄.

Theorem Implications - On a practical note, the theorem
simply implies that when an aggregate cyber-risk covering
agency is faced with covering independent and identical non-
catastrophic cyber-risk distributions, the variance of the com-
bined distribution does not increase with the number of piled
up cyber-risks - simply an encouraging signal for-profit cyber-
risk managers to contribute to a sustainable aggregate loss
coverage market. While this latter point has long been believed
and empirically validated in the cyber-insurance research lit-
erature, the result from Theorem 2.1 is a surprising new facet
that we unravel in this paper via theory.

III. AGGREGATING CURTAILED IID CATASTROPHIC RISKS

In this section we analyze what happens when aggregating
multiple heavy-tailed risks each of which has been curtailed, to
fit the realistic scenario where cyber-risk managers have upper
bounds on coverage. We also study the role of how the length
of the distributional support needed for the analogue to hold
depends on the number of cyber-risks in a manager’s portfolio
and the degree of heavy-tailedness of unbounded cyber-risk
distributions. We have the following result, an analogue of
Theorem 2.1 for curtailed catastrophic cyber-risks in this
regard, the proof of which is in online Appendix B .

Theorem 3.1: Let n ≥ 2 and let w ∈ In be a weight vector
with w[1] 6= 1. Let Xi, i = 1, · · · , n be IID r.v.’s ∼ CS(r) for
some r ∈ (0, 1) and their respective a-truncated version given
by Yi defined above. Denote G(w, z) = P (w[1]X1 +w[2]X2 >

https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
https://drive.google.com/file/d/1xHrLRwVOFtP8mWbwf_SuVm-lBmcRPlZO/view?usp=sharing
https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
https://drive.google.com/file/d/1xHrLRwVOFtP8mWbwf_SuVm-lBmcRPlZO/view?usp=sharing
https://drive.google.com/file/d/1xHrLRwVOFtP8mWbwf_SuVm-lBmcRPlZO/view?usp=sharing
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z) − P (X1 > z), which is positive if w[1] 6= 1 (via Theorem
2.1). For any z > 0, and all

a >

(
E[|X1|r](n− 1)

2G(w, z)

) 1
r

, (1)

the following inequality holds:

P (Yw(a) > z) > P (Y1(a) > z). (2)

Note that G(w, z) reflects that V aRq[Xw] > V aRq[w[1]X1 +
w[2]X2] > V aRq[X1].

The implications of this theorem are multifarious and are
presented in multiple blocks.

Implication 1 - The practical implications of the theorem
are analogous to Theorem 2.1 in the case of bounded cyber-
risks. More specifically, cyber-risk aggregation coverage con-
tinues to be disadvantageous in general for catastrophic trun-
cated heavy-tailed distributions. For n ≥ 2 and any cyber-risk
valuation z > 0, there exists n cyber-risks with finite support
with the property that the variance return of the aggregate
cyber-risk portfolio is riskier than that of the portfolio con-
sisting of a single cyber-risk. From a mathematical viewpoint,
Theorems 2.1 and 3.1 indicate that VaR is not sub-additive
and, thus, its coherency (see online Appendix A for details)
is always violated in the class of extremely heavy-tailed cyber-
risks with infinite first moments. More specifically, Theorem
3.1 implies that VaR may also be non-coherent in the world
of cyber-risks with bounded distributional support. We just
proposed conditions under which it is statistically incentive
compatible for a (re)-insurer to spread catastrophic cyber-risks
having heavy tails. One could also further study conditions un-
der which it will not be optimal to spread risks - in the interest
of space, this analysis is provided in online Appendix C and
also in [26].

Implication 2 - We note that in the special case of a cyber-
risk portfolio with equal weights, w̃n =

(
1
n ,

1
n , ....,

1
n

)
, we

have

G(w̃n, z) = P

(
X1 +X2

2
> z

)
− P (X1 > z). (3)

This means that the length of the distributional support re-
flecting statistical incentive non-compatibility to aggregate
cyber-risk coverage in Theorem 3.1 can be taken to be same
for all the portfolios with equal weights w̃n. This holds,
obviously, for the whole class of the portfolios w such that
w[1] <

1
2 . Furthermore, a similar result holds as well for

the class of portfolios w such that w[1] < 1 − ε, (and, thus,
wi < 1ε for all i), where 0 < ε < 1

2 . As follows from
the proof of Theorem 3.1, for all such portfolios w, the

theorem holds for a >
(

E[|X1|r](n−1)

2G̃(w,z)

) 1
r

, where G̃(ε, z) =

P ((1− ε)X1 + εX2 > z)) < G(w, z). This follows since
any vector w with w[1] < 1 − ε is majorized (see basics
of majorization in the online Appendix A ) by the vector
(1− ε, ε, 0, .., 0).

Implication 3 - From the proof of Theorem 3.1, it follows
that, in the special case of portfolios with equal weights
w̃n =

(
1
n ,

1
n , . . . ,

1
n

)
where n > 2, the length of the interval of

truncation a can be reduced to a smaller value. In such a case,

the theorem holds under the restriction a >
(
E|X1|r(n−1)

2Fn(z)

)1/r

,
where

Fn(z) = P

(∑n
i=1Xi

n
> z

)
− P (X1 > z) (4)

Note that, by Theorem 2.1, Fn(z) > H(z) = G (w̃n, z) for
n ≥ 3. This suggests that if the support is large compared
to the number of cyber-risks to be aggregated, it might be
infeasible for an aggregate risk manager to cover the risks.
This demonstrates the “unpleasant” properties of VaR as a
cyber-risk measure under heavy-tailedness does not arise from
the relatively high likelihood of getting very large losses but
rather from the fact that there are too few cyber-risks available
for the profitable aggregate cyber-risk coverage to work.

Implication 4 - Theorem 3.1 also shows that, for a specific
loss probability q, there exists a sufficiently large a such
that the value at risk V aRq[Yw(a)] of the return Yw(a) at
level q is greater than the value at risk V aRq[Y1(a)] of the
return Y1(a) at the same level: V aRq[Yw(a)] > V aRq[Y1(a)].
This highlights the dampening factor to the sustainability
of covering aggregate heavy-tailed cyber-risks. One should
emphasize that the last inequality between the returns Yw(a)
and Y1(a) holds for the particular fixed loss probability q
and, in the comparisons of the values at risks V aRq [Yw(a)]
and V aRq [Y1(a)] , the length of the interval needed for the
reversals of the stylized facts on the portfolio variation depends
on q (similar to the fact that in Theorem 3.1, the length
of the distributional support a depends on the value of the
disaster level z - denoting the degree of heavy-tailedness).
This is the crucial qualitative difference of the results in
Theorem 3.1 for bounded/curtailed cyber-risk distributions and
their implications for the value at risk, from those given by
Theorem 2.1 and Theorem 3.1 for unbounded risks, where the
inequalities hold for all z > 0 and all q ∈ (0, 1).

Implication 5 (Case of non-identical distributions) - The
analogues of Theorem 2.1 hold for i.i.d. risks X1, . . . , Xn

that have skewed extremely thick-tailed stable distributions
with infinite first moments: Xi ∼ S0<α<1(σ, β, 0), α ∈ (0, 1),
σ > 0, β ∈ [−1, 1], i = 1, . . . , n. As follows from the
proof of Theorem 3.1 (see online Appendix B ), this implies
that complete analogues of the results in the present section
for bounded versions of symmetric risks from the classes
CS(r) continue to hold for truncated extremely heavy-tailed
stable distributions Sα(σ, β, 0) with α ∈ (0, 1), σ > 0, and
an arbitrary skewness parameter β ∈ [−1, 1]. In particular,
Theorem 3.1 continues to hold for arbitrary skewed risks
Xi ∼ Sα(σ, β, 0), α ∈ (0, 1), σ > 0, β ∈ [−1, 1] if

a >
(
E|X1|r(n−1)

G(w,z)

)1/r

.
Results Overview and Impact on IoT Societies - As a
summary of the theory results in this section and the previous
one, Figure 1 provides a graphical illustration of the impact
of the type and number of cyber-risks on a risk manager’s
valuation (statistical utility, i.e., decreased VaR) of covering
aggregate cyber-risk. The interesting observation is that for
cases B and C illustrating curtailed cyber-risks, there is a
drop in the utility, i.e., increased VaR, as a function of the
number of cyber-risks, in covering aggregate risk, followed

https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
https://drive.google.com/file/d/14CdCGsX8P2iRJDmcTxidGaqmFOGugdi2/view?usp=sharing
https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
https://drive.google.com/file/d/1xHrLRwVOFtP8mWbwf_SuVm-lBmcRPlZO/view?usp=sharing
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Fig. 1: Conceptual illustration of statistical utility of cyber-risk
aggregation as a function of the number of i.i.d. cyber-risks. For
a given ‘n’, cyber-risk valuation ’z’, there always exists a ‘dipping’
statistical utility region for cases B and C, and the region expands as
a increases (ref. Theorem 3.1). α < 1 for B, C, and D.

by an indefinite increase in utility henceforth. The initial drop
is due to the tradeoffs from the higher costs of aggregate and
increased variance-induced coverage due to a certain threshold
‘n’ catastrophic cyber-risks versus the benefit received from
coverage premiums. Clearly, beyond ‘n’ cyber-risks the statis-
tical benefits of aggregate cyber-risk coverage outweighs the
negatives of increased risk spread. The outcome of cases A
and D are intuitively obvious.
In [18], the author rationalizes why aggregate loss coverage
services like re-insurance might be sustainable, and not en-
counter a systemic catastrophe problem. For the general re-
insurance setting, he mentions (i) a portfolio of independent
risks and geographical diversification, (ii) partial cessation of
risk with proper risk screening, and (iii) lack of liability loops,
to be the major factors in favor of re-insurance services being
sustainable. However, there are major differences between gen-
eral re-insurance and cyber re-insurance services, that allows
us to closely look at cyber re-insurance service sustainability
under universal risk types. Clearly (i) and (ii) are impractical
when major cyber-catastrophes occur and impact IoT societies
(e.g., ones caused by the WannaCry and Mirai attacks) (Curve
D). In the most optimistic scenarios, Figure 1 illustrates what
the size and nature of the coverage portfolio should look
like for a cyber re-insurer assuming limited coverage liability
for i.i.d. heavy-tailed cyber-risks (Curves A-C). However, the
challenge still remains to deal with non i.i.d. heavy-tailed
cyber-risks such as those posed by WannaCry and Mirai.

IV. AGGREGATING NON-IID HEAVY-TAILED RISKS

Cyber-risks are not only heavy tailed in nature, but are
likely to be correlated, i.e., tail-dependent. This is true espe-
cially in scenarios of major systemic impact causing cyber-
attacks. The likelihood of systemic loss impacts are fairly
high in a service-networked smart society [27][1] driven by
IoT technologies. In this section we study the effect on VaR
on aggregating such cyber-risk types. Statistical correlations
and dependencies between distributions are often captured
systematically using copulas [28][29] (see online Appendix A
for a preliminary introduction), that are multivariate functions
of marginal distributions outputting dependence values. In
our case, the marginal distributions are cyber-risk random

variables having a heavy-tail characterized via a power-law
distribution family.

To illustrate dependencies between such marginal distribu-
tions, we start with the bivariate (generalization to follow)
Eyraud-Farlie-Gumbel-Morgenstern (EFGM) copula - a power
type copula (see online Appendix A for more details) whose
marginal distributions obey the power law to reflect heavy-
tailed cyber-risk distributions (both catastrophic and other-
wise). Let (X1, X2) be random variables with the EFGM
copula and power-law marginals. Then, for any x ≥ 1 and
for j = 1, 2, we have

Fj(x) ∼ 1− x−α; fj(x) ∼ αx−α−1

H (x1, x2) = Π2
i=1Fi(xi) [1 + γ (1− F1 (x1)) (1− F2 (x2))]

h (x1, x2) = Π2
i=1fi(xi) [1 + γ (1− 2F1 (x1)) (1− 2F2 (x2))]

Let (ξ1(α), ξ2(α)) be independent random variables from
power-law distributions with tail index α, often called in-
dependent copies of (X1, X2) . Our key insight is that in
the tail, the behavior of products and powers of power-law
densities and distributions of Xj ’s is identical to the behavior
of their independent copies. This makes it possible to provide
asymptotic (with respect to the loss comparisons between the
VaR of the aggregated loss and that of a single risk. More
specifically, the crucial component of P

(
X1+X2

2 > x
)

under
the EFGM copula can be written as follows∫

s+t
2 >x

α2s−α−1t−α−1
(
2s−α − 1

) (
2t−α − 1

)
dsdt

=4α2P
(
ξ1(2α) + ξ2(2α)

2
> z

)
− 2α2P

(
ξ1(2α) + ξ2(α)

2
> z

)
− 2α2P

(
ξ1(α) + ξ2(2α)

2
> z

)
+ α2P

(
ξ1(α) + ξ2(α)

2
> z

)
where the behavior of the individual summands for large z is
driven by the lowest tail index of ξj in the spreading portfolio.

We formalize this result in the following theorem (see
online Appendix B for a proof), which generalizes to n de-
pendent heavy-tailed random variables X1, X2, . . . , Xn with
multivariate EFGM copula and power-law marginals.

Theorem 4.1: For an asymptotically large z > 0, and any
n, α > 0

P

(
n∑
i=1

Xi > zn

)
∼ P

(
n∑
i=1

ξi(α) > zn

)
Theorem Implications - The result suggests that subopti-
mality of cyber-risk aggregation in the VaR framework for
extremely heavy tailed losses carries over from independence
to the dependence-capturing EFGM copula. That is, cyber-risk
aggregation increases VaR of dependent extremely heavy tailed
risks within this copula family. It is also easy to see that for
dependent losses with the EFGM copula and sufficiently small
loss probability q, we have

V aRq
(
X1+X2

2

)
< V aRq (X1) , if α > 1

V aRq
(
X1+X2

2

)
> VaRq (X1) , if α < 1

Important generalizations of Theorem 4.1 arise if we consider
the wider class of power-type copulas. Most popular members

https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
https://drive.google.com/file/d/190WaqylxZCTpMCchynYaJ_I17zrBIMfr/view?usp=sharing
https://drive.google.com/file/d/1xHrLRwVOFtP8mWbwf_SuVm-lBmcRPlZO/view?usp=sharing
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of this class such as the polynomial copula of Drouet Mari
and Kotz [30] and the copula with cubic section of Nelsen et
al. [31] can be written in the following general form

C (u1, . . . , un) =
∑

i1,...,in=0,1,...

γi1,i2,...,in ·u
i1
1 ·u

i2
2 · . . . ·uinn

(5)
for a multiple index i = (i1, i2, . . . , in) and a set of cor-
responding parameters γi with appropriate restrictions that
make C (u1, . . . , un) a copula. For example, Drouet Mari and
Kotz [30][32] show how to obtain a polynomial copula from
function f = ukvq . The key feature of such copulas is that
they and their densities can be expressed as powers of uj ’s.
This allows to apply similar arguments as for EFGM. To this
end, we have the following theorem, the proof of which is in
online Appendix B .

Theorem 4.2: For dependent losses with a power-type cop-
ula in (5) and for an asymptotically large z > 0, and any
n, α > 0, the conclusions of Theorem 4.1 hold.
Theorem Implication - The implications are the same as that
of Theorem 4.1.

V. EXPERIMENTAL EVALUATION

In this section, we put our theory to a rigorous test us-
ing real-world cyber-loss data. We want to study whether
aggregating individual cyber-risks from different IoT-driven
organizational sources (assumed to show characteristics of
real-world cyber-loss) in a smart society increase or decrease
a risk manager’s VaR/Expected Utility (EU) - the scalar metric
for measuring the extent of aggregate cyber-risk. In particular,
(a) we relax the mathematical assumption used in theory that
cyber-loss distributions are stable - might not always be the
case in practice, and (b) we assume that cyber-risk managers
are boundedly rational in estimating the extent of cyber-risk.
In a nutshell, we first show using real world data that indi-
vidual cyber-losses can indeed exhibit a heavy-tailed statistical
nature. We then investigate the VaR/EU trends with increasing
number of heavy-tailed cyber-risks to be aggregated, for both
rational, and boundedly rational cyber-risk manager behavior.

A. Experimental Setting

We consider 1553 cyber losses between 1995 and 2014 ex-
tracted from the SAS OpRisk database. For detailed description
of the data, we refer the reader to [3] and [33]. To model
the bounded rationality of cyber-risk managers in gauging
the extent of cyber-risk, we use prospect theory introduced
by Kahneman and Tversky [34] to model their behavior. We
first perform several goodness-of-fit tests for several widely
used distributions to characterize the true nature of the cyber-
loss distribution. Namely, we use the normal, log-normal,
general Pareto, and peak-over-threshold (POT) distributions
for the purpose of comparison. Based on the goodness-of-
fit-statistics (using Log-Likelihood, AIC, BIC, Kolmogorov-
Smirnoff, and Anderson-Darling tests), we find that the gen-
eralized Pareto distribution and the POT approach fit the data
best. The estimated Pareto Index (the exponent in a power
law distribution) characterizing a heavy-tailed distribution for
the generalized Pareto distribution is 0.62 and for the POT

approach it is 0.81, using analysis adopted from [35]. We
thus can confirm that cyber risks are indeed very heavy tailed
and the expectation and variance do not exist. Empirically,
illustrating the tail dependencies on cyber-loss is more difficult
because of the lack of data (exhibiting tail dependencies on
loss data) and analyses. For this reason, different potential
dependency structures, generated via statistical copulas, will
be considered in our empirical part.

If a cyber-risk manager (e.g., an insurer) takes on a random
risk X , a function of n - the number of cyber-risks it accepts
to aggregate, the effective outcome (before opting for cyber
re-insurance services) for the insurer once X is realized is:

V (x) =

{
X if X < k,
k if X ≥ k, (6)

where k is the limit of the amount of cyber-risk it can accept
- true of practice. In the special case when there is no limited
liability, i.e., when k = ∞, we have V (X) = X for all X .
If k < ∞, u is defined only on [0, k], and without loss of
generality u(k) = 0. Here, we assume the utility function
of a perfectly rational and risk-averse cyber-insurer to be
generally of the following form:

u(x) = (V (x))β , β ∈ (0, 1),

which is the power utility function, and for x being a
risk variable, is a Von-Neumann Morgenstern (VNM) utility
function. β is degree of risk-aversion of the cyber-insurer.
However, for the purpose of this section, we will assume
a boundedly rational cyber-risk manager, whose behavior-
driven parameters (in contrast to the perfectly rational setting)
is given by

V (x) = Ew(x) =

∫
w(p(x))V (x)dx;

V (x) =

{
Xβ if 0 < X ≥ k,
−λ(−x)β ifX > k,

(7)

and the probability weighing function is specified as

w(p) =
pγ

(pγ + (1− p)γ)
1
γ

, (8)

where λ is the prospect-theoretic loss aversion coefficient of
the cyber-risk manager, p(x) is the cyber-risk distribution
function, and β - the manager’s VNM-theoretic coefficient of
risk aversion. We set the parameters β = 0.88, λ = 2.25, and
γ = 0.61, as in [34]. To capture dependency between cyber-
risks, we use the Gaussian and Clayton statistical copulas, as
suggested in [36][37][38].

B. Experimental Results

For a prospect-theoretic setting, we first investigate the
effect of the number of i.i.d. cyber-risks (of various types)
to be aggregated, on the value at risk (VaR) for a cyber-risk
manager, as the first moments may not exist to compute E(X).

We observe from Figure 2 that V aR0.995(X) monotonically
decreases for normal and log-normal individual cyber-risk
distributions (fitted using our data set) - though the VaR for
log-normal risks decreases, at a slower rate. On the other hand,
V aR0.995(X) (denoted as VaR from now on throughout the

https://drive.google.com/file/d/1xHrLRwVOFtP8mWbwf_SuVm-lBmcRPlZO/view?usp=sharing
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Fig. 2: Cyber-Risk Aggregation Performance (on the VaR Metric) for
i.i.d. Risks of Pareto, POT, Log-Normal, and Normal Distributions.

section) increases (not monotonically) for Pareto and POT
individual cyber-risk distributions, as is expected in theory.
However, the non-monotonicity indicates (also in accordance
to our theory) that for heavy-tailed cyber-risks, there exists
a certain number of i.i.d risks, aggregating which does not
increase VaR. To focus on our empirical data set, we use
statistical bootstrapping to simulate the VaR for varying num-
ber of aggregated cyber-risks. In this regard, we draw directly
from our original sample instead of the different distributions
assumed above. The sample is drawn with replacement (thus,
i.i.d.) and is of equal size as the original data set (m=1553
observations). Moreover, we calculate the confidence interval
by repeating the bootstrapping itself.

Figure 3a shows the bootstrapped VaR and its confidence
interval. We observe that the bootstrapped VaR (induced by the
empirical loss distribution) always lies above the log-normal
VaR and the aggregation benefit is much less prevalent than
assumed. As a consequence, in accordance with theory, not
to aggregate heavy-tailed risks at all would be optimal from
a cyber-risk management perspective. Since the dependency
affects the aggregation results, we also simulate the VaR
for different dependency structures, but for non-heavy tailed
cyber-risks. Figure 3b plots the VaR again as a function of the
number of cyber-risks to be aggregated, for identical (but not
independent) distributed cyber-risks and different copulas.

We observe that the VaR is decreasing for both the Gaussian
(an instance of a symmetrical copula) and Clayton (an instance
of a non-symmetrical copula) copulas with increasing number
of cyber-risks to be aggregated - implying that aggregating non
i.i.d. non heavy-tailed cyber-risks is sustainable for the risk
manager. However, stronger dependency between the cyber-
risks would cause extreme losses to become more likely and
the consequent relative increase to VaR.

We now focus on an expected utility (EU) setting induced
on limited liability where applicable, to compare cyber-risk
aggregation performance with the prospect-theoretic setting.
Figures 4a and 4b show the EU-theoretic performance based
on a power utility function u(x) for aggregating i.i.d. and

non i.i.d. cyber-risks respectively. As expected, for normally
distributed i.i.d. cyber-risks (Figure 4a), we attain an increase
in expected utility with increase in the number of cyber-
risks aggregated. However, this is not true for a heavy tailed
distribution such as the Pareto or the log-normal distributions.
However, in the special case of non-i.i.d. normal cyber-risks,
risk aggregation increases expected utility.

We also study the role of pool of homogeneous cyber-risk
managers (CRMs) that share1 aggregate cyber-risk, on the
EU of a single manager in that pool. We consider various
instances of individual cyber-risks with Pareto index α that
either is 1 (characterizing heavy-tail nature of cyber-risk), or
lie below 1 (characterizing extremely heavy-tailed cyber-risks).
Figure 5 shows that for risk with a Pareto Index of 1 and
limited liability of k = 60, the expected utility of a single
manager for different aggregation and cyber-risk pooling sizes
(#CRMs), is U-shaped. The U-shape denotes that the benefit
from aggregation first decreases before it eventually increases
again (similar trend to that in Figure 1).

Using a Pareto index of 0.62 (as estimated from the data,
and indicating an extreme heavy-tailed distribution) changes,
ceteris paribus, the result completely, as shown in Figure 6a.
Since the expected utility decreases monotonically not pro-
viding any (pooled) coverage management such as insurance
would be optimal and the aggregate coverage market would
fail completely.

A numerical analysis shows that the U-shape can only be
observed if the Pareto tail index is in the range of (0.8, 1.2).
While the situation in Figure 5 leaves room for regulatory
intervention, the model in Figure 6a does not. Figure 6b
shows the same analysis for the POT model (with k = 60)
that combines the log-normal distribution for the body with
the Pareto distribution for the tail. Similar to the Pareto
model in Figure 6a, the expected utility monotonically decays
for all pool sizes (#CRMs) as the cyber-risk aggregation
sizes increases. Therefore, it is not beneficial for cyber-risk
managers (CRMs) to supply any (pooled) aggregate cyber-
coverage, and the subsequent coverage market fails.

VI. RELATED WORK

In this section, we solely focus on research related to cyber-
risk aggregation. We partition this section in two parts: (i)
the heavy-tailed and tail-dependent nature of cyber-risk, and
(ii) feasibility insights regarding the profitable coverage of
aggregate heavy-tailed cyber-risk.

A. On the Heavy-Tailed and Dependent Nature of Cyber-Risk

There are quite a few instances in practice where cyber-
risks have shown heavy-tailed impact. In [17], Maillart and
Sornette analyzed a Datalossdb 2017 dataset consisting of 956
personal identity loss incidents that occurred in the United
States between year 2000 and 2008. They found that the
personal identity losses per incident, denoted by X , can be
modeled by a heavy tail distribution P (X > n) ∼ nα where
α = 0.7 +/- 0.1, and more importantly this result holds for a
variety of organizations: business, education, government, or

1We do not explicitly consider the strategic aspects of sharing in this work.
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Fig. 3: Cyber-Risk Aggregation Performance (on the Bootstrapped VaR Metric) for (a) i.i.d. Risks of the Empirical Distributions, and (b)
non i.i.d. Risks of the Log-Normal Distribution with Gauss and Clayton Copulas.

Fig. 4: Cyber-Risk Aggregation Performance (on the Expected Utility Metric) for (a) i.i.d. Risks of Different Distributions, and (b) non
i.i.d. Normal Risk Distributions with Gauss and Clayton Copulas.

a medical institution. Because the probability density function
of the identity losses per incident is static, the situation of
identity loss is stable from the point of view of the breach size.
Edwards et al. [39] analyzed a Privacy Rights Clearinghouse
database of 2017 consisting of 2,253 breach incidents that span
over a decade from 2005 to 2015. These breach incidents
include two categories: negligent breaches (i.e., incidents
caused by lost, discarded, stolen devices, or other reasons)
and malicious breaching (i.e., incidents caused by hacking,
insider and other reasons). They showed that the breach size
can be modeled by log-normal or log-skewnormal distribution
that are heavy-tailed distributions, and the breach frequency
can be modeled by the negative binomial distribution. In [40],
Wheatley et.al., merged and analyzed cyber-breach incidents
from the Datalossdb and the Privacy Rights Clearinghouse
database spanning over a decade (2000 to 2015). They used
the Extreme Value Theory (EVT) [38] to study the maximum
breach size, and further modeled the large breach sizes by a
doubly truncated heavy-tailed Pareto distribution. There are
also studies establishing the dependence among cyber risks.
Notable among them are [41][7][42][43][44][16][45][46].

Shortcomings - Existing research in cyber-security has been
successful in elucidating the heavy-tailed and tail-dependent
nature of cyber-risk; however, is yet to propose formally
proven directions to allow a profit-minded cyber-risk manager
to judge whether a collection of such risks is suitable to
aggregate, under various degrees of heavy-tailedness. This
decision making problem will increasingly arise in the IoT
age where major cyber-risks affecting smart societies will give
rise to a systemic effects that cyber-risk managers have to deal
with. It is a common perception from empirical studies and
insurance literature that i.i.d. cyber-risks, even though heavy-
tailed, are suitable for aggregation. In this paper, we showed
quite the contrast for i.i.d. catastrophic heavy-tailed risks.

B. Covering Aggregate Cyber-Risk in IoT Societies

In a recent work, a group of researchers [27] have studied
the problem of whether (a) the underlying network of service
organizations in society relying on IT/IoT technologies, and
(b) the statistical nature of cyber-risk distributions, positively
or negatively affect aggregate cyber-risk managers in expand-
ing their business. The authors surprisingly show that both,
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Fig. 5: Curtailed Cyber-Risk Aggregation Performance (on the
Expected Utility Metric) for i.i.d. Pareto Risk Distributions, with
varying number of CRMs. Here, k = 60, β = 0.0315, α = 1.

the underlying network, as well as i.i.d. and non i.i.d. non-
heavy tailed cyber-risk distributions does not have a major
role to play (does not imply independence) in encouraging
or discouraging aggregate cyber-risk managers to expand or
contract their coverage business.
Shortcomings - The cited work, though tackling the problem
of judging the role of the network and the nature of cyber-risk
distributions on the future of cyber-risk aggregation business,
does not model catastrophic and tail-dependent heavy-tailed
cyber-risks that may be a possibility in modern IoT-driven
societies. However, as a major positive, their result in the work
does provide confidence to aggregate cyber-risk managers to
boost their cyber-loss coverage business for non-heavy tailed
cyber-risks in a networked interdependent setting - something
the digital society is in need of.

VII. DISCUSSION AND SUMMARY

In this section, we first provide a brief review of the current
state of insurance-driven CRM (an indicator of the degree of
cyber-risk control) in small and medium IT-driven businesses
that represent the majority of IT businesses in operation,
and gauge the likelihood of cyber-risk distributions that may
be sourced at these businesses. More importantly SMBs are
highly service networked among themselves, and this network
can pose significant cyber-risk aggregation challenges for
CRM solution providers [27]. Our review is based on recent
Advisen and CyberScout reports - indsutry leaders in CRM and
cyber-security solutions. Finally, we summarize the paper.

A. Discussion

Small and medium-sized businesses are an important driver
of the economy and should be empowered with progressive
insurance policies that include cyber risk protection services,
incident response and insurance coverages to provide the
financial support needed to keep the doors open after an attack.
As of 2020, insurers and cybersecurity services firms are
innovating around the clock to create risk mitigation policies
and procedures that can provide peace of mind to SMB leaders.

However, despite a rise in cyberattacks against small and
mid-size businesses, about 69% of SMB respondents to a
recent survey by CyberScout said they did not carry cyber
insurance coverage and worryingly many don’t even have the
appropriate security safeguards in place - clearly indicating a
lack of seriousness by SMBs to improve their cyber-hygiene.
Moreover, in the age of COVID, business owners are under
a lot of pressure from the economic disruptions caused by
the pandemic, and finding it even more challenging now to
find the time to prioritize cyber-security. CyberScout found
that 16% of the respondents had experienced a ransomware
event and 40% said they would not know who to contact if
they did fall victim to ransomware. SMBs also may not be
aware enough of the ransomware risk – data breach ranks as
the highest concern for 30% of respondents, but ransomware is
tops for only 10%. And only 22% have a backup plan in place.
Over half (51%) of survey respondents had no formal cyber-
security training program, but 76% said they felt confident
about their company’s security infrastructure. However, the
results revealed some possible gaps. A quarter of respondents
said they send out “best practices” emails to employees, 22%
reported performing “live fire” trainings and 20 percent also
performed vulnerability testing. Annual trainings were the
only measure taken by 18% of the respondents. Due to the
pandemic, just over half (53%) reported having employees
work remotely, but only 34% required the use of a VPN
connection and only 17% took any steps to create or remind
employees of remote work security protocols. In fact, 14%
said they had no specific cyber measures for remote working.
Clearly, even in 2020, the state of cyber-security strength in
SMBs is far from desired, and there is a significant likelihood
of each being a source of heavy-tailed, i.e., catastrophic,
cyber-risks in the event of major cyber-attacks.

B. Paper Summary
In this paper, we provided a rigorous general theory to

elicit conditions on (tail-dependent) heavy-tailed cyber-risk
distributions under which a risk management firm will find
it (un)profitable to provide aggregate cyber-risk coverage for
IoT-driven smart societies. As our primary novel contribu-
tions, we proved that (a) spreading catastrophic heavy-tailed
cyber-risks that are identical and independently distributed
(i.i.d.), i.e., not tail-dependent, is not an effective practice
for aggregate cyber-risk managers, whereas spreading non-
catastrophic i.i.d. heavy-tailed cyber-risks is, and (b) spreading
catastrophic and tail-dependent heavy-tailed cyber-risks is not
an effective practice for aggregate cyber-risk managers. A
summary of cyber-risk management effectiveness results for
various i.i.d./non-i.i.d. distributions is shown in Figure 7.
We conducted a real-data driven numerical study to validate
claims made in theory - in the process we relaxed certain
assumptions (made in theory) on the mathematical structure of
cyber-risk distributions, and assumed that cyber-risk managers
are boundedly rational rather than perfectly rational in the
interpreting the extent of cyber-risk, as is usual in practice.
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Fig. 6: Curtailed Cyber-Risk Aggregation Performance (on the Expected Utility Metric) for i.i.d. Pareto Risk Distributions, with varying
number of CRMs. Here, k = 60, β = 0.0315, α = (a) 0.62 (b) 0.81.

Fig. 7: Summary of The Effectiveness (Yes (Tick)/No (Cross)) of
Aggregate (Large Enough n) Cyber-Risk Management for Light and
Heavy-Tailed IID/non-IID Distributions.
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I. APPENDIX A - PRELIMINARIES

In this section, we provide (i) the necessary mathematical background, including the definition of Value-at-Risk (VaR)
- a commonly used risk measure, the class of heavy-tailed distributions that are mathematically stable, and the basics of
majorization theory [1] which is essential to our analysis, and (ii) the proofs of the various theorems in the main paper.

A. VaR and Its Properties

Given a risk tolerance q, 0 ≤ q ≤ 1, and a random variable X denoting the severity of losses in our context, the Value-at-Risk
(VaR) of X at level q (or the (1 − q)-quantile) is denoted by V aRq(X) and defined as:

V aRq(X) = inf{z ∈R ∶ P (X > z) ≤ q},

where R denotes the real line. This quantity denotes an amount (the VaR), such that the likelihood of losing more than this
amount is no more than some tolerance q (e.g., 1%). For this reason the literature is generally interested in the regime q ≤ 1/2.

A function F ∶ X →R, where X is a linear space of r.v.’s defined on a probability space, is called a coherent risk measure
[2][3] if it satisfies the following axioms:

● (Monotonicity) F(X) ≥ F(Y ) if X ≥ Y a.s., for all X,Y ∈ X .
● (Translation Invariance) F(X + a) = F(X) + a for all X ∈ X and any a ∈R.
● (Positive Homogeneity) F(λX) = λF(X) for all X ∈ X and any λ ≥ 0.
● (Subadditivity) F(X + Y ) ≤ F(X) + F(Y ) for all X,Y ∈ X .

Here we assume that X contains all degenerate r.v.’s X = a ∈R. It is easy to verify that V aRq(X) always satisfies monotonicity,
translation invariance, and positive homogeneity, but generally fails to satisfy subadditivity, see counterexamples in [2][3]. For
this reason the VaR measure is generally considered non-coherent1.

B. Basics of Heavy-Tailed Stable Distributions

We will limit ourselves to a specific but popular family of heavy tailed distributions whose tails decline parametrically as
a polynomial function of some α > 0. Specifically, within this context, a random variable X is said to have a heavy-tailed
distribution if 0 < c ≤ P (∣X ∣>x)

x−α ≤ C < ∞ for large x, for constants c and C. This is also denoted as P (∣X ∣ > x) ≍ x−α. Such
distributions have finite statistical moments E[∣X ∣p] if the order p < α, and infinite statistical moments for p ≥ α.

A distribution is said to be stable if a linear combination of two independent random variables with this distribution has the
same distribution, up to location and scale parameters [6][4][5]. The Normal, Cauchy and the Levy distributions are the only
stable distributions for which closed form expressions exist, and consequently are often used in analysis for their tractability.
Of these three, Cauchy and Levy are heavy-tailed; they are also stable for α ∈ (0,2). Therefore, we shall focus on these
distributions in this paper. Another attractive property with respect to heavy-tailed stable distributions is the applicability of
the central limit theorem for such (non) IID random variables with undefined variance. This generalization (due to Gnedenko
and Kolmogorov [4]) states that the sum of a number of random variables with symmetric distributions with infinite variances
and having power-law tails (Paretian tails), will tend to a stable distribution as the number of summands increase.

Specifically, we will denote by Sα(σ,β,µ), 0 < α ≤ 2, the distribution of a stable, heavy-tailed r.v. X . Here α is also referred
to as the characteristic exponent (or index of stability, which characterizes the heaviness or the rate of decay of the tail); σ > 0
is the scale parameter, which is a generalization of the concept of standard deviation (it coincides with the standard deviation
in the special case of Gaussian distributions (α = 2)); β ∈ [−1,1] is the symmetry index that characterizes the skewness of the
distribution – a stable distributions with β = 0 are symmetric about the location parameter µ. In order to uniquely determine
the distribution Sα(σ,β,µ) of a random variable X , we would need its characteristic function (c.f.) that always exists [7], and
is defined as:

E[eiθX] = { eiµθ−σ
α∣θ∣α(1−iβsign(θ) tan(πα2 )), if α ≠ 1,

eiµθ−σ∣θ∣
α(1+( 2

π iβsign(θ) ln ∣θ∣), if α = 1,
(1)

where θ ∈R, i2 = −1 and sign(θ) is the sign of x defined by sign(θ) = 1 if θ > 0; sign(0) = 0; and sign(θ) = −1 otherwise.
In what follows, we write X ∼ Sα(σ,β,µ), if the random variable X has the stable distribution Sα(σ,β,µ). Throughout

this paper, we will also limited ourselves to the case of µ = 0 without loss of generality.
Now consider IID stable r.v’s Xi ∼ Sα(σ,β,0), such that β ≠ 0 for α = 1. These distributions are called strictly stable. If

Xi ∼ Sα(σ,β,0), α ∈ (0,1) ∪ (1,2] are strictly stable r.v.’s, for all ai ≥ 0, i = 1, ..., n, we have

∑ni=1 aiXi

(∑ni=1 a
α
i )

1
α

∼ Sα(σ,β,0). (2)

1It is shown in [4] and [5] that mathematical constructions can be designed under small q and with α < 1 that makes VaR coherent; however, such
constructions are rare in practice. The also commonly used alternative risk measure, conditional VaR (the average of worst losses - also called expected
shortfall or Average VaR), or CVaR, is coherent by the above definition. However, CVaR is the average of the worst losses of a (cyber-risk) portfolio (i.e., for
q ∈ (0,1], CVaRq(Y ) = 1/q∫ 1

1−q V aR1−τ (Y )dτ ), and subsequently requires existence of the statistical first moments of the loss distribution, which may
not be true of catastrophic cyber-risks. For this reason we will limit ourselves to the VaR measure in this letter.



C. Families of Distribution Convolutions

A fundamental operation for a cyber-risk aggregator is the convolution (aggregation) of individual risk distributions. In this
section, we define and mention some salient features (where applicable) of various classes/families of distribution convolutions.

Families Related to Convolution of Symmetric Stable Distributions - For 0 ≤ r < 2, we denote by CS(r) the class
of cyber-risk distributions which are convolutions of individually symmetric stable cyber-risk distributions Sα(σ,0,0) with
indices of stability α ∈ [r,2) and σ > 0. That is, CS(r) consists of cyber-risk distributions of r.v.’s X for which, with some
k ≥ 1,X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that Yi ∼ Sαi(σi,0,0), αi ∈ [r,2), σi > 0, i = 1, ..., k.

For 0 ≤ r ≤ 2, we denote by CS(r) the class of cyber-risk distributions which are convolutions of individually symmetric
and stable cyber-risk distributions Sαi(σi,0,0) with indices of stability αi ∈ (0, r) and σi > 0. That is, CS(r) consists of
cyber-risk distributions of r.v.’s X for which, with some k ≥ 1,X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s
such that Yi ∼ Sαi(σi,0,0), αi ∈ (0, r), σi > 0, i = 1, ..., k.

Salient Features of Convolution Families - The classes CS(r) and CS(r) are mathematically closed under convolutions
- a powerful property contributing to tractable analysis of cyber-risks in these families. A linear combination of independent
stable r.v.’s with the same characteristic exponent α also has a stable distribution with the same α. However, in general, this
does not hold in the case of convolutions of stable distributions with different indices of stability. Therefore, the class CS(r)
of convolutions of symmetric stable distributions with different indices of stability α ∈ (r,2] is wider than the class of all
symmetric stable distributions Sα(σ,0,0) with α ∈ (r,2] and σ > 0. Similarly, the class CS(r) is wider than the class of all
symmetric stable distributions Sα(σ,0,0) with α ∈ (0, r) and σ > 0.

By definition, for 0 < r1 < r2 ≤ 2, the following inclusions hold: CS(r2) ⊂ CS(r1) and CS(r1) ⊂ CS(r2). Cauchy
distributions S1(σ,0,0) are at the dividing boundary between the classes CS(1) and CS(1) Similarly, for r ∈ (0,2), stable
distributions Sr(σ,0,0) with the characteristic exponent α = r are at the dividing boundary between the classes CS(r) and
CS(r). More precisely, the Cauchy distributions S1(σ,0,0) are the only ones that belong to all the classes CS(r) with r > 1
and all the classes CS(r) with r < 1. Stable distributions Sr(σ,0,0) are the only ones that belong to all the classes CS(r′)
with r′ > r and all the classes CS(r′) with r′ < r. The properties of stable distributions discussed herein imply that the p-th
absolute moments E[∣X ∣p] of a r.v. X ∼ CS(r), r ∈ (0,2), are finite if p ≤ r. However, all the r.v.’s X ∼ CS(r), r ∈ (0,2]
have infinite moments of order r: E[∣X ∣r] = ∞. In particular, the distributions of r.v.’s X from the class CS(1) are extremely
heavy-tailed (representing catastrophic cyber-risks) in the sense that their first moments are infinite: E[∣X ∣] = ∞.

D. Basics of Majorization Theory

A vector2 with n components w ∈Rn
+ is said to be majorized by a vector v ∈Rn, written as w ≺ v, if ∑ki=1w[i] ≤ ∑ki=1 v[i],

k = 1,⋯, n − 1, and ∑ni=1 a[i] = ∑ni=1 b[i], where w[1] ≥ ⋯ ≥ w[n] and v[1] ≥ ⋯ ≥ v[n] denote the elements of w and v in
decreasing order, respectively. The relation w ≺ v implies that the components of w are less diverse than those of v (see [1]).
For instance, it is easy to see that the following holds:

(
n

∑
i=1

wi
n
,⋯,

n

∑
i=1

wi
n

) ≺ (w1,⋯,wn) ≺ (
n

∑
i=1

wi,0, ...0) , ∀w ∈Rn
+ . (3)

In particular, we have the following for two vectors in Rn+1
+ , n ≥ 1:

( 1

n + 1
,⋯, 1

n + 1
,

1

n + 1
) ≺ ( 1

n
,⋯, 1

n
,0) . (4)

It is also immediate that if w ≺ v, then the same is true for their respective permutations: (wπ(1),⋯,wπ(n)) ≺ (vπ(1),⋯, vπ(n))
for all permutations π of the set {1., .., n}.

A function φ ∶ Rn
+ → R is called Schur-convex (resp. Schur-concave) [8] if (w ≺ v) Ô⇒ (φ(w) ≤ φ(v)) (resp. (w ≻

v) Ô⇒ (φ(w) ≥ φ(v)), ∀w, v ∈ Rn
+ . If the inequalities are strict whenever a ≺ b and a is not a permutation of b, then φ is

said to be strictly Schur-convex (resp. strictly Schur-concave). Evidently, if φ ∶ Rn
+ → R is Schur-convex or Schur-concave,

then ∀w ∈Rn
+ , we have:

φ(w1,⋯,wn) = φ(wπ(1),⋯,wπ(n)), (5)

where π is any permutation of the set {1, ..., n}. Examples of strictly Schur-convex functions φ ∶ Rn
+ → R are given by

φα(w1,⋯,wn) = ∑ni=1w
α
i for α > 1. The functions φα(w1,⋯,wn) are strictly Schur-concave for α < 1 (see Proposition

3.C.1.a in [9]).
Consider a portfolio of cyber-risks X1, ....,Xn with weights w = (w1, ....,wn) ∈ R+

n denoting the fraction of each risk the
portfolio is exposed to, i.e., the fraction of each risk an insurer is responsible for covering. The aggregate risk is denoted by

Zw =
n

∑
i=1

wiXi . (6)

2In this letter, we denote a vector (v[i]...v[n]) with n components by v.



Denote by In = {w = (w1, .....,wn) ∶ wi ≥ 0, i = 1,⋯, n,∑ni=1wi = 1} the simplex of all vectors where weights sum to 1.
Define two special vectors w = ( 1

n
, 1
n
, ..... 1

n
) ∈ In and w = (1,0, .....,0) ∈ In. Given the same set of risks, the theory of

majorization suggests that w ≺ w, and a portfolio based on the latter weights is more diverse. This notion of diversity is in a
way the opposite of what one might consider to be the variability among the weights: the more diverse w has the least varied
weights (consisting of a single risk) within In, while the less diverse w has more varied weights (equally spread over n risks).
Similarly, Eqn (4) suggests that ( 1

n+1
,⋯, 1

n+1
) ∈ In+1 has more varied weights than ( 1

n
,⋯, 1

n
,0) ∈ In+1 since it contains an

additional non-redundant cyber-risk Xn+1, but the former is actually less diverse using majorization.
A simple example demonstrating the conventional wisdom that portfolio variation is preferable is given by the case with

normally distributed risks. Let X1, ....,Xn ∼ S2(σ,0,0) be i.i.d. symmetric normal r.v.’s. Then, for a portfolio of equal weights
w = ( 1

n
, ...., 1

n
) we have Zw ∼ S2( σ√

n
,0,0) ∼ 1√

n
X1. By positive homogeneity of the VaR, we have for n ≥ 2:

V aRq(Zw) =
1√
n
V aRq(X1) =

1√
n
V aRq(Zw) < V aRq(Zw) . (7)

That is, the most varied portfolio with equal weights w has lower value at risk than that of the least varied portfolio concentrating
on a single risk.

E. Introduction to Copulas and Dependence

In this section provide a basic introduction to copulas and a specific form of copula that accommodates distributions with
heavy-tailed marginals.

1) Basics of Copulas: Copulas are joint distributions with uniform marginals. They are useful because given the marginal
distributions, they represent the dependence in the joint distribution. Specifically, let H (x1, . . . , xn) and h (x1, . . . , xn) denote
the joint distribution and density, respectively, of n random variables (X1, . . . ,Xn) and suppose that the marginal density and
cdf of Xj are fj (xj) and Fj (xj) respectively, j = 1, . . . , n. Then, an n -dimensional copula of (X1, . . . ,Xn) is a function
C ∶ [0,1]n → [0,1] such that (a) C (u1, . . . , un) is increasing in each ui, i = 1, . . . , n (b) C (u1, . . . , ui−1,0, ui+1, . . . , un) =
0, i = 1, . . . , n (c)C (1, . . . ,1, ui,1, . . . ,1) = ui, i = 1, . . . , n (d) for any aj ≤ bj , j = 1, . . . , n

2

∑
i1=1

⋯
2

∑
in=1

(−1)i1+⋯+inC (u1i1 , . . . , unin) ≥ 0

where uj1 = aj and uj2 = bj for all j = 1, . . . , n (e) H (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) , or, for absolutely continuous
copulas with density

c (u1, . . . , un) , h (x1, . . . , xn) = c (F1 (x1) , . . . , Fn (xn))
n

∏
i=1

f (xi)

It is well known that c is uniquely determined if Fj is monotone. The probability integral trans- forms uj = Fj (xj) , j = 1,2,
are the uniform random variables that form the marginals of c. So, equivalently C can be defined as a joint cdf of n random
variables, each of which is uniform on [0,1]. The fact that we can model Fj separately from modelling the dependence
between Fj ’s is what makes copulas natural in the analysis of dependent power-law marginals.

A well known property of the copula function is that it is bounded by the Frechet-Hoeffding bounds, which correspond to
extreme positive and extreme negative dependence. For a bivariate copula, let x1 be a fixed increasing function of x2, then
the copula of (x1, x2) can be written as min (u1, u2) and this is the upper bound for bivariate copulas. Now let x1 be a fixed
decreasing function of x2; then the copula of (x1, x2) can be written as max (u1 + u2 − 1,0) . So the two extreme cases when
diversification does not have any effect (comonotonicity) and when it is always beneficial (countermonotonicity) regardless of
the heavy-tailedness are nested within the copula framework. [10] and [11] provide excellent introductions to copulas.

If we return to the two-risk example above, we are interested in how the aggregate loss proba- bility for a diversified portfolio
compares to that of a single risk. That is, we are interested in the behavior of

P (X1 +X2

2
> x) =

x

z1+z2
2 >x

f (z1;α) f (z2;α) c (F (z1;α) , F (z2;α) ;γ)dz1dz2

= E {c (F (ξ1;α) , F (ξ2;α) ;γ) I [ξ1 + ξ2
2

> x]}

where c (u1, u2;γ) is a copula density parameterized by γ, f(⋅;α)′ s are power-law marginal densities, I[⋅] is the indicator
function and ξj ’s are independent copies of Xj ’s. There is no general way to express this in terms of P (X1 > x) and
whether diversification decreases or increases VaR depends on the copula family as well as on the interaction between α and
γ. However, there exist classes of copulas for which we can make explicit comparisons.



2) Power-type copulas: We now discuss a class of copula families which will be used in the paper. The class contains
copulas that are multiplicative or additive in powers of the margins, or can be approximated using such copulas. We call this
class power-type. It is similar but more general than the power copula family and than the polynomial copula family which
we discuss below.

The most common family in this class is the Eyraud-Farlie-Gumbel-Morgenstern (EFGM) cop- ula family and its general-
izations. The bivariate EFGM copula family can be written as follows

C (u1, u2) = u1u2 [1 + γ (1 − u1) (1 − u2)] (8)

where γ ∈ [−1,1], and its density has the form c (u1, u2) = 1+g (u1, u2) , where g (u1, u2) is an expansion by linear functions
1−2uj , j = 1,2. This is a non-comprehensive copula in the sense that it has a limited range of dependence it can accommodate.
For example, Kendall’s τ of an EFGM copula is restricted to [− 2

9
, 2

9
]

The multivariate version of the EFGM copula introduced by [12] has the following form:

C (u1, u2, . . . , un) = u1u2 . . . un
⎡⎢⎢⎢⎣
1 +

n

∑
c=2

∑
1≤i1<i2<...<ic≤n

γi1,i2,...,ic (1 − ui1) (1 − ui2) . . . (1 − uic)
⎤⎥⎥⎥⎦

where −∞ < γi1,i2,...,ic < ∞ are such that ∑nc=2∑1≤i1<i2<...<ic≤n γi1,i2,...,icδi1⋯δic ≥ −1 for all δi ∈ [−1,1], i = 1, . . . , n. This
copula family can be viewed as a special case of a wider family of n -dimensional power copulas introduced by [13]. The
power copula family can be written as follows

C (u1, . . . , un) = u1u2⋯un
⎡⎢⎢⎢⎣
1 +

n

∑
c=2

∑
1≤i1<i2<...<ic≤n

γi1,i2,...,ic (uli1 − u
l+1
i1

) (uli2 − u
l+1
i2

) . . . (ulic − u
l+1
ic

)
⎤⎥⎥⎥⎦

where γi1,i2,...,ic ∈ (−∞,∞) are such that
n

∑
c=2

∑
1≤i1<i2<...<ic≤n

∣γi1,i2,...,ic ∣ ≤ 1

This corresponds to using nonlinear rather than linear functions in the expansion of the copula density function.
Another relevant copula family, of which the EFGM copula in (8) is a special case, is known as a polynomial copula family

(see, e.g., [14], p. 74 ). An order m(m ≥ 4) polynomial copula can be written as follows:

C(u, v) = uv
⎡⎢⎢⎢⎢⎣
1 +

k+q≤m−2

∑
k≥1,q≥1

γkq (uk − 1) (vq − 1)
⎤⎥⎥⎥⎥⎦

where γkq =
θkq

(k + 1)(q + 1) and 0 ≤ min
⎛
⎝

k+q≤m−2

∑
k≥1,q≥1

qγkq,
k+q≤m−2

∑
k≥1,q≥1

kγkq
⎞
⎠
≤ 1

One example of this copula family is [15] copula with cubic section, which is written as follows

C(u, v) = uv + 2γuv(1 − u)(1 − v)(1 + u + v − 2uv) (9)

where γ ∈ [0, 1
4
] Several other copula families can be written as approximations of the EFGM copula. For example, it is

well known that the EFGM copula is a first-order approximation to the Ali-Mikhail- Haq (AMH) copula family. The AMH
copula can be written as follows:

C (u1, . . . , un) = (1 − γ) [
n

∏
i=1

(1 − γ
ui

+ γ) − γ]
−1

where γ ∈ [−1,1] A less known result is that the Plackett and the Frank copula families are first order Taylor approximations of
the EFGM copula at independence (see, e.g., [11], p.100,133). The n− variate Frank copula, which is comprehensive, radially
symmetric and Archimedian, can be written as follows

C (u1, . . . , un) = logγ [1 + ∏
n
i=1 (γui − 1)
(γ − 1)n−1

]

where γ ≥ 0 The n -variate Plackett copula, which is also comprehensive, is rarely discussed in the literature unless n = 2, in
which case it has the following form:

C (u1, u2) =
1

2(γ − 1) [1 + (γ − 1) (u1 + u2) −
√

[1 + (θ − 1) (u1 + u2)]2 − 4γ(γ − 1)u1u2]

where 1 ≠ γ > 0. However, a way to generalize to n > 2 is presented by [16]. It is also worth mentioning that for all the three
copula families, there exist improved second-order approximations (see, e.g., [11], p.83 ).

An interesting set of approximation results are given by [15], [17] and [18]. [15] provide a generalization of the bivariate
EFGM copula using cubic terms as in (9) and show that it can be used to approximate some well-known families of copulas,



both symmetric and not, such as the copulas of [19] and [20], as well as the Sarmanov copula. They also show that copulas
in (9) are second- degree Maclaurin approximations to members of the Frank and Plackett copula families.

[17] studies the power series class of copulas, obtained as weighted geometric means of the EFGM and AMH copulas, and
shows that the Gumbel-Barnett and Cuadras-Auge copulas can be expressed as first-order approximations to that class. [18]
provide approximations of the tail-dependent Clayton-Oakes copula, which also have the form of a power- type generalization
of the EFGM copula.

II. APPENDIX B - PROOFS

Proof of Theorem 3.1: Since v is not a permutation of w, we have ∑ni=1 vi ≠ 0 and ∑ni=1wi ≠ 0. This together with the fact
that X1, . . . ,Xn are IID according to Sα(σ,0,0), α ∈ (0,1], means that, using Eqn (2), we have

Zv =
n

∑
i=1

viXi =d (
n

∑
i=1

vαi )1/αX1. (10)

Using positive homogeneity of VaR, we thus obtain

V aRq(Zv) = (
n

∑
i=1

vαi )
1/α

V aRq(X1). (11)

Proposition 3.C.1.a in [9] implies that the function h(v1, . . . , vn) = ∑ni=1 v
α
i is strictly Schur-concave in v ∈Rn

+ if α < 1.
Therefore, we have ∑ni=1w

α
i < ∑ni=1 v

α
i , if α < 1. This, together with the Schur-concavity definition given in Section I-D

implies that for α < 1,

V aRq(Zv) = (
n

∑
i=1

vαi )
1/α

V aRq(X1) < (
n

∑
i=1

wαi )
1/α

V aRq(X1) = V aRq(Zw), if 0 < α < 1 (12)

Thus we prove the Theorem 2.1. ∎

Proof of Theorem 3.2: Let α ∈ (0,2], σ > 0, and let v = (v1, . . . , vn) ∈ Rn
+ and ω = (ω1, . . . , ωn) ∈ Rn

+ be two vectors
of portfolio weights such that (v1, . . . , vn) ≺ (ω1, . . . , ωn) and (v1, . . . , vn) is not a permutation of (ω1, . . . , ωn) (clearly,
∑ni=1 vi /= 0 and ∑ni=1 ωi /= 0). Let X1, . . . ,Xn be i.i.d. risks such that Xi ∼ Sα(σ,0,0), i = 1, . . . , n. It follows that if
c = (c1, . . . , cn) ∈ Rn

+ , ∑ni=1 ci /= 0, then Zc = ∑ni=1 ciXi =d (∑ni=1 c
α
i )1/αX1. Using positive homogeneity of the value at

risk (property a3 in Section 3), we thus obtain that, for all q ∈ (0,1/2),

V aRq(Zc) = V aRq(X1)(
n

∑
i=1

cαi )
1/α

. (13)

Proposition 3.C.1.a in Marshall & Olkin (1979) implies that the function h(c1, . . . , cn) = ∑ni=1 c
α
i is strictly Schur-convex in

(c1, . . . , cn) ∈Rn
+ if α > 1 and is strictly Schur-concave in (c1, . . . , cn) ∈Rn

+ if α < 1. Therefore, we have ∑ni=1 v
α
i < ∑ni=1 ω

α
i ,

if α > 1. This implies that, for all q ∈ (0,1/2),

V aRq(Zv) < V aRq(Zω) (14)

if α > 1. This completes the proof of parts (i) of Theorem 3.2 in the case of i.i.d. stable risks Xi ∼ Sα(σ,0,0), i = 1, . . . , n.
Let now X1, . . . ,Xn be i.i.d. risks such that Xi ∼ CSLC, i = 1, . . . , n. By definition, Xi = γYi0 + ∑kj=1 Yij , i = 1, . . . , n,

where γ ∈ {0,1}, k ≥ 0, Yi0 ∼ LC, i = 1, . . . , n, and (Y1j , . . . , Ynj), j = 0,1, . . . , k, are independent vectors with i.i.d.
components such that Yij ∼ Sαj(σj ,0,0), α ∈ (1,2], σj > 0, i = 1, . . . , n, j = 1, . . . , k. From results in Proschan (1965) for tail
probabilities of log-concavely distributed r.v.’s it follows that, for all q ∈ (0,1/2) and all j = 0,1, . . . , k, V aRq(∑ni=1 viYij) <
V aRq(∑ni=1 ωiYij). The densities of the r.v.’s Yi0, i = 0,1, . . . , n, are symmetric and unimodal. In addition, the density of the
r.v.’s Yij , i = 1, . . . , n, j = 1, . . . , k, are symmetric and unimodal. We thus conclude that the densities of the r.v.’s ∑ni=1 viYij
and ∑ni=1 ωiYij , j = 0,1, . . . , k, are symmetric and unimodal as well. We thus obtain

V aRq(Zc) = V aRq (
n

∑
i=1

viXi)) = V aRq
⎛
⎝
γ
n

∑
i=1

viYi0 +
k

∑
j=1

n

∑
i=1

viYij
⎞
⎠
<

V aRq
⎛
⎝
γ
n

∑
i=1

ωiYi0 +
k

∑
j=0

n

∑
i=1

ωiYij
⎞
⎠
= V aRq(

n

∑
i=1

ωiXi) = V aRq(Zω)
(15)

This completes the proof of part (i) of Theorem 3.2. The bounds in parts (ii) of Theorem 3.2 follow from their parts (i) and
majorization comparisons. Thus we prove the Theorem 3.2. ∎



Proof of Theorem 4.1: We have

P (Xw > z) ≤ P (Yw(a) ≥Xw > z) + P (Xw > z,Xw > Yw(a))
≤ P (Yw(a) > z) + P (Xw > Yw(a))
= P (Yw(a) > z) + P (X1 > a ∪X2 > a ∪⋯Xn > a)

≤ P (Yw(a) > z) +
n

∑
i=1

P (Xi > a)

= P (Yw(a) > z) + nP (X1 > a) , (16)

where the last inequality is due to the union bound. We get for all z > 0

P (Xw > z) > P (Xw̄ > z) +G(w, z) = P (X1 > z) +G(w, z) = P (X1 > a) + P (Y1(a) > z) +G(w, z). (17)

Relations (16) and (17) together imply that

P (Yw(a) > z) − P (Y1(a) > z) > G(w, z) − (n − 1)P (X1 > a). (18)

Since E[∣X1∣r] < ∞, by the Chebyshev’s inequality, we get

P (X1 > a) =
1

2
P (∣X1∣ > a) ≤

E[∣X1∣r
2ar

. (19)

Estimates (17) and (18) gives

P (Yw > z) − P (Y1(a) > z) > G(w, z) − (n − 1)E[∣X1∣r]
2ar

. (20)

Under conditions of the theorem, the RHS of (20) is positive. Consequently,

P (Yw(a) > z) > P (Y1(a) > z), (21)

completing the proof. ∎.

Proof of Theorem 5.1: We start with the case n = 2. Due to independence between ξ1 and ξ2, we have that

P (ξ1 (β1) + ξ2 (β2)
2

> z) = β1β2 ∫ s+t
2 >z

s−β1−1t−β2−1dsdt (22)

Now for non-independent (X1,X2) under the EFGM copula, we can write using (22)

P (X1 +X2

2
> z) =∫ s+t

2 >z
f1(s)f2(t) [1 + γ (1 − 2F1(s)) (1 − 2F2(t))]dsdt

=P (ξ1(α) + ξ2(α)
2

> z) + γ ∫ s+t
2 >z

f1(s)f2(t) (1 − 2F1(s)) (1 − 2F2(t))dsdt

=P (ξ1(α) + ξ2(α)
2

> z) + γE (1 − 2F1(ξ)) (1 − 2F2(η)) I (
ξ1 + ξ2

2
> z)

where I(⋅) denotes the indicator function.
Now consider the last term:

∫ s+t
2 >z

f1(s)f2(t) (1 − 2F1(s)) (1 − 2F2(t))dsdt = ∫ s+t
2 >z

α2s−α−1t−α−1 (2s−α − 1) (2t−α − 1)dsdt

= 4α2 ∫ s+t
2 >z

s−2α−1t−2α−1dsdt

− 2α2 ∫
2−2α−1

s+t
2 >z

t−α−1dsdt

− 2α2 ∫
2

s+t
2 >z

s−α−1t−2α−1dsdt

+ α2 ∫ s+t
2 >z

s−α−1t−α−1dsdt

=4α2I1 − 2α2I2 − 2α2I3 + α2I4

where I1 = P ( ξ1(2α)+ξ2(2α)
2

> z) ,I2 = P ( ξ1(2α)+ξ2(α)
2

> z) ,I3 = P ( ξ1(α)+ξ2(2α)
2

> z) and

I4 = P ( ξ1(α)+ξ2(α)
2

> z)



Thus we obtain

P (X + Y
2

> z) =(1 + γα2)P (ξ1(α) + ξ2(α)
2

> z)

− 2γα2P (ξ1(α) + ξ2(2α)
2

> z)

− 2γα2P (ξ1(2α) + ξ2(α)
2

> z)

+ 4γα2P (ξ1(2α) + ξ2(2α)
2

> z)

It is a well-known result in the power law literature (see, among others, Corollary 1.3 .2 in Embrechts et al. 1997) that,
asymptotically as z →∞

P (ξ1(β) + ξ2(β)
2

> z) ∼ 2P (ξ1(β) > 2z) ∼ 21−βz−β (23)

for all β > 0. In addition, if β1 < β2, then

P (ξ1 (β1) + ξ2 (β2)
2

> z) ∼ P (ξ1 (β1) > 2z) ∼ 2−β1z−β1 (24)

It follows from (23)-(24) that, as z →∞

P (X + Y
2

> z) ∼ (1 + γα2)21−αz−α − 2γα221−αz−α + 4γα221−2αz−2α

∼ (1 − γα2)21−αz−α

∼ P (ξ1(α) + ξ2(α)
2

> z)

We now provide a generalization for any n. Let X1,X2, . . . ,Xn have a multidimensional EFGM copula

C (u1, u2, . . . , un) = u1u2 . . . un
⎡⎢⎢⎢⎣
1 +

n

∑
c=2

∑
1≤i1<i2<...<ic≤n

γi1,i2,...,ic (1 − ui1) (1 − ui2) . . . (1 − uic)
⎤⎥⎥⎥⎦

(25)

where γi1,i2,...,ic are real constants satisfying certain inequalities that guarantee that (25) represents a proper copula.
Let X1,X2, . . . ,Xn have power law distributions with the same parameter α > 0. It follows from (25) that the joint cdf of

X1,X2, . . . ,Xn has the form

F (x1, x2, . . . , xn) =F1 (x1)F2 (x2) . . . Fn (xn)

×
⎡⎢⎢⎢⎣
1 +

n

∑
c=2

∑
1≤i1<i2<...<ic≤n

γi1,i2,...,ic (1 − Fi1 (xi1)) (1 − Fi2 (xi2)) . . . (1 − Fic (xic))
⎤⎥⎥⎥⎦

Let, ξ1 (β1) , ξ2 (β2) , . . . , ξn (βn) denote the independent random variables with power law distri- butions with tail indices
β1, β2, . . . , βn, respectively. That is,

P (ξi (βi) > x) = x−βi

x ≥ 1, i = 1,2, . . . , n, . In particular, ξ1(α), ξ2(α), . . . , ξn(α) are independent copies of X1,X2, . . . ,Xn Then, it follows that

P (
n

∑
i=1

Xi > zn) =P (
n

∑
i=1

ξi(α) > zn)

+
n

∑
c=2

∑
i≤i1<i2<...<ic≤n

γi1,i2,...,ic

×E [(1 − 2Fi1 (ξi1(α))) (1 − 2Fi2 (ξi2(α))) . . . (1 − 2Fic (ξic(α))) I (
n

∑
i=1

ξi(α) > zn)]

Thus, since the random variables ξ1(α), ξ(α), . . . , ξn(α) are i.i.d.

P (
n

∑
i=1

Xi > zn) =P (
n

∑
i=1

ξi(α) > zn)

+
⎛
⎝
n

∑
c=2

∑
1≤i1<i2<...<ic≤n

γi1,i2,...,ic
⎞
⎠

×E [(1 − 2F1 (ξ1(α))) (1 − 2F2 (ξ2(α))) . . . (1 − 2Fc (ξc(α))) I (
n

∑
i=1

ξi(α) > zn)]



Now consider the last term
E [(1 − 2F1 (ξ1(α))) (1 − 2F2 (ξ2(α))) . . . (1 − 2Fc (ξc(α))) I (∑ni=1 ξi(α) > zn)]

= ∑cs=0∑1≤j1<j2<...<js≤c(−1)c−s ∫∑ni=1 xi>zn∏k∈{j1,j2,...,js}(2α)x
−2α−1
k

×∑k∈{1,2,...,n}/{j1,j2,...,js} αx
−α−1
k dx1dx2 . . . dxn

= ∑cs=0∑1≤j1<j2<...<js≤c(−1)c−sP (∑k∈{j1,j2,...,js} ξk(2α) +∑k∈{1,2,...,n}/{j1,j2,...,js} ξk(α) > z)

(26)

where 1 ≤ j1 < j2 < . . . < js ≤ c, s = 0,1, . . . , c, c = 2, . . . , n, (s, c) ≠ (n,n) ( and , thus , (j1, j2, . . . , jc) is different from
(1,2, . . . , n)) Consequently, for large z, we obtain

P
⎛
⎝ ∑
k∈{j1,j2,...,js}

ξk(2α) + ∑
k∈{1,2,...,n}/{j1,j2,...,js}

ξk(α) > z
⎞
⎠
∼ P

⎛
⎝ ∑
k∈{1,2,...,n}/{j1,j2,...,js}

ξk(α) > zn
⎞
⎠
⋅ (22)

In addition, by Corollary 1.3 .2 of Embrechts et al. (1997), we have, for large z > 0

P
⎛
⎝ ∑
k∈{1,2,...,n}/{j1,j2,...,js}

ξk(α) > z
⎞
⎠
∼ (n − s)P (ξ1(α) > zn) ∼

n − s
zαnα

So, for for s = c = n, (j1, j2, . . . , jn) = (1,2, . . . , n)

P (
n

∑
k=1

ξk(2α) > zn) ∼ nP (ξ1(2α) > zn) ∼
n

z2αn2α
(27)

From (26)-(27) it follows that, with 1 ≤ j1 < j2 < . . . < js ≤ c, s = 0,1, . . . , c, c = 2, . . . , n

(s, c) ≠ (n,n)
E [(1 − 2F1 (ξ1(α))) (1 − 2F2 (ξ2(α))) . . . (1 − 2Fc (ξc(α))) I (∑ni=1 ξi(α) > zn)] ∼

∑cs=0∑1≤j1<j2<...<js≤c(−1)c−s n−s
zαnα

= (∑cs=0(−1)c−sCsc ) z−αn1−α − (∑cs=0(−1)c−ssCsc ) z−αn−α

where Csc = c!/(s!(c − s)!) denotes binomial coefficients. Now, by the well-known identity for binomial coefficients,
c

∑
s=0

(−1)c−sCsc =
c

∑
s=0

(−1)sCsc = 0

It thus follows that P (∑ni=1Xi > zn) ∼ P (∑ni=1 ξi(α) > zn). Thus we have proved Theorem 5.1. ∎

Proof of Theorem 5.2: The density is a polynomial of a lower order, which we write in the following generic form:

c (u1, . . . , un) = ∑
k1,...,kn=0,1,...

φk1,k2,...,kn ⋅ uk11 ⋅ uk22 ⋅ . . . ⋅ uknn

Then,

P (
n

∑
i=1

Xi > zn) =E
⎡⎢⎢⎢⎢⎣
∑

ki∈{0,1,...}
φk1,k2,...,kn

×F k11 (ξ1(α))F k22 (ξ2(α)) . . . F knn (ξn(α)) I (
n

∑
i=1

ξi(α) > zn)]

=P (
n

∑
i=1

ξi(α) > zn) +E
⎡⎢⎢⎢⎢⎣

∑
ki∈{0,1,...}/{ki=0∀i}

φk1,k2,...,kn

⎤⎥⎥⎥⎥⎦

×F k11 (ξ1(α))F k22 (ξ2(α)) . . . F knn (ξn(α)) I (
n

∑
i=1

ξi(α) > zn)]

Now consider the last term

∑[∑ki∈{0,1,...}/{ki=0∀i} φk1,k2,...,knF
k1
1 (ξ1(α))F k22 (ξ2(α)) . . . F knn (ξn(α)) I (∑ni=1 ξi(α) > zn)]

= ∑∑ni=1 si>nzki∈{0,1,...} ψk1,k2,...,kns
−α(k1+1)
1 s

−α(k2+1)
2 . . . s

−α(kn+1)
n ds1 . . . dsn

= ∑ki∈{0,1,...} ψk1,k2,...,kn ∫∑ni=1 si>nz s
−α(k1+1)
1 s

−α(k2+1)
2 . . . s

−α(kn+1)
n ds1 . . . dsn

∑ki∈{0,1,...} ψk1,k2,...,knP ( ξ1(α(k1+1))+...+ξn(α(kn+1))
n

> z)

where the new coefficients ψ ’s are different from φ ’s because we have expressed (1 − s−αi )ki in terms of powers of sαi . Now,
using the same arguments as for (23)-(24)

P ( ξ1(α)+...+ξn(α)
n

> z) ∼ nP (ξ1(α) > nz) ∼ n1−αz−α

P ( ξ1(α(k1+1))+...+ξn(α(kn+1))
n

> z) ∼ P (ξ1(α) > nz) ∼ n−αz−α



for all ki ≥ 0. It thus follows that P (∑ni=1Xi > zn) ∼ P (∑ni=1 ξi(α) > zn)
Thus we have proved Theorem 5.2. ∎

III. APPENDIX C - WHEN NOT TO SPREAD CURTAILED CYBER-RISKS?
We proposed conditions under which it is statistically incentive compatible for a (re)-insurer to spread catastrophic cyber-

risks having heavy tails. In this section, we further study the implications of it, by analyzing under which conditions it will not
be optimal to spread risks. To calculate bounds from (14), we need bounds on E∣X ∣r,G(ω, z), and for uniformly diversified
portfolios, on Fn(z).

We assume i.i.d. risks X1,X2, . . . ,Xn in Sα(σ,β,0) with α ∈ (r,1), β ∈ [−1,1] and σ > 0.30 From [4], we have that, for
X ∈ Sα(σ,β,0), r < α < 1

E∣X −med(X)∣r ≤ 22+r/ασrΓ(1 − r

α
)Γ(r) sin(π

2
r) (28)

where med(X) denotes the median of X and Γ(x) = ∫
∞

0 e−ttx−1dt is the Gamma function. Furthermore, according to [4], if
α ∈ (0,1), then, using the notation Qα,β,σ(x) for P (X > x)

Qα,β,σ(x) =
1

απ

∞
∑
k=1

(−1)k−1 Γ(kα + 1)
kΓ(k + 1) sin(kπα(1 + β)

2
) σ

kα

xkα
(29)

x > 0 We also use the fact that

P (w(1)X1 +w(2)X2 > z) = P
⎛
⎜
⎝
X1 >

z

[(w(1))α + (w(2))α]1/α

⎞
⎟
⎠

and more generally (for arbitrary nonnegative vectors summing to one, w )

P (
n

∑
i=1

wiXi > z) = Qα,β,σ (z/∥ẇ∥α)

where ∥w∥α = (∑ni=1 (wi)α)
1/α

. Specifically, 1/ ∥w̃′
n∥α = n1−1/α. Therefore, we have: G(w, z) = Qα,β,σ ( z

[(w(1))α+(w(2))α]1/α
)−

Qα,β,σ(z) and
Fn(z) = Qα,β,σ (zn1−1/α) −Qα,β,σ(z), (30)

where Qα,β,σ is defined in (25).
If we wish to introduce a time dimension, we can define the T-scaling operator: ΛT ∶ x ↦ Tx. The well-known the T 1/2

rule for Brownian processes, W , implies that W ○ ΛT
d= T 1/2 × W. For processes in Sα(σ,0,0) this generalizes to the

T 1/α ” rule [21] ) , i.e., for X ∶ R+ → R, a stable stochastic process with X(1) ∼ Sα(σ,0,0), we have X ○ΛT ≜ T 1/α ×X.
Thus, for such processes properties scale-up faster over time than for Brownian processes. With this T 1/α scaling in mind, for
X1, . . . ,Xn stable processes Xi ∶R+ →R and Xi(t) ∈ Sα (t1/ασ,0,0) , we can define the truncated processes Xa

i (T ) =Xi(T ),
if ∣Xi(T )∣ ≤ aT 1/α,Xa

i (T ) = aT 1/α if Xi > aT 1/α and Xa
i (T ) = −aT 1/α if Xi < −aT 1/α. With these definitions, it is clear

that σ changes to (T2/T1)1/α
σ in equations (24) − (26) when going from time-scale T1, to time-scale T2

We first study the symmetric case, i.e., the case when β = 0. For simplicity, we begin with the case when there are two
assets, n = 2, and study how a depends on w(1) (and w(2) = 1 −w(1) ). In this case, the analogue of equation (24) is (from
[4]

E∣X ∣r ≤ 2σrΓ(1 − r

α
)Γ(r) sin(π

2
r) (31)

Furthermore, the asymptotic expansion (25) implies the following bounds for the tail of Qα,0,σ

1

απ
Γ(α + 1) sin(πα

2
) σ

α

xα
− 1

απ

Γ(2α + 1)
4

sin(πα)σ
2α

x2α
< Qα,0,σ(x) <

1

απ
Γ(α + 1) sin(πα

2
) σ

α

xα
(32)

Using (28) for G(w, z), we get

G(w, z) > 1
απ

Γ(α + 1) sin (πα
2
) σα
zα

((w(1))α + (w(2))α − 1)−
1
απ

Γ(2α+1)
4

sin(πα)σ
2α[(w(1))

α
+(w(2))

α
]
2

z2α

(33)

Using bounds (4),(27) and (29) we get that the theorem holds with the following easy to compute estimate for the length of
the distribution support:

ã =
zα/r(απ)

1/rσ(r−α)/r(Γ(1− rα )Γ(r) sin(π2 r) )
1/r

(n − 1)1/r

⎡⎢⎢⎢⎢⎣
Γ(α + 1) sin (πα

2
)((w(1))α + (w(2))α − 1) − Γ(2α+1)

4
sin(πα)σ

α((w(1))α+(w(2)))2

z2
]

1/r (34)



Thus, ã as a function of w(1) provides a sufficient condition for cyber-risk spreading into (w1,w2) not being preferred to not
spreading cyber-risk among other insurers.

Finally, we generalize to the case β ≠ 0. Equation (27) and the right-hand-side inequality in (28) implies the following bound
for the median med(X) of a r.v. X ∼ Sα(σ,β,0)

∣med(X)∣ ≤ 21/ασ ( 1

απ
Γ(α + 1) sin(πα(1 + β)

2
))

1/α

This and (24) imply that

E∣X ∣r ≤ 2r/ασr ( 1

απ
Γ(α + 1) sin(πα(1 + β)

2
))

r/α

+ 22+r/ασrΓ(1 − r

α
)Γ(r) sin(π

2
r) (35)

Similar to (29), we obtain that, in the general case of skewed stable distributions,

G(w, z) > 1
απ

Γ(α + 1) sin (πα(1+β)
2

) σα
zα

((w(1))α + (w(2))α − 1)−
1
απ

Γ(2α+1)
4

sin(πα(1 + β))σ
2α[(w(1))

α
+(w(2))

α
]
2

z2α

(36)

Using bounds (31) and (32), we obtain that in the case of general skewed stable risks Xi ∼ Sα(σ,β,0), the theorem holds
with the following easy to compute estimate for the length of the distribution support:

ã >
21/rzα/r(απ)1/rσ(r−α)/r (( 1

απ
Γ(α + 1) sin (πα(1+β)

2
))
r/α

+ 4Γ (1 − r
α
)Γ(r) sin (π(1+β)

2
r))

1/r
(n − 1)1/r

[Γ(α + 1) sin (πα(1+β)
2

) ((w(1))α + (w(2))α − 1) − Γ(2α+1)
4

sin(πα(1 + β))σ
α((w(1))α+(w(2))α)2

zα
]
1/r (37)

The same type of analysis as for the case with β = 0 could now be carried out for general β ’s.
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