
How to Request Network Resources
Just-in-Time using Smart Contracts

Tooba Faisal
King’s College London, UK

tooba.faisal@kcl.ac.uk

Damiano Di Francesco Maesa
University of Cambridge, UK

dd534@cam.ac.uk

Nishanth Sastry
University of Surrey, UK

n.sastry@surrey.ac.uk

Simone Mangiante
Vodafone Group R&D, UK

simone.mangiante
@vodafone.com

Abstract—5G promises unprecedented levels of network
connectivity to handle diverse applications, including life-
critical applications such as remote surgery. However, to
enable the adoption of such applications, it is important
that customers trust the service quality provided. This can
only be achieved through transparent Service Level Agree-
ments (SLAs). Current resource provisioning systems are too
general to handle such variety in applications. Moreover,
service agreements are often opaque to customers, which can
be an obstacle for 5G adoption for mission-critical services.

In this work, we advocate short-term and specialised rather
than long-term general service contracts and propose an
end-to-end Permissioned Distributed Ledger (PDL) focused
architecture; which allows operators to advertise their service
contracts on a public portal backed by a PDL. These service
contracts with clear Service Level Agreement (SLA) offers are
deployed as smart contracts to enable transparent, automatic
and immutable SLAs. To justify our choice of using a
permissioned ledger instead of permissionless, we evaluated
and compared contract execution times on both permissioned
(i.e. Quorum and Hyperledger Fabric) and permissionless
(i.e. Ropsten testnet) ledgers.

Index Terms—Distributed Ledger Technology, Smart Con-
tract, Blockchain, 5G, Network Services

I. INTRODUCTION

Network service requirements have changed consider-
ably since the advent of 5G, and its promise to provide
connections that have guarantees such as ultra-low low
latency, high reliability or massive bandwidth. Such
guarantees are required to enable life-critical applica-
tions such as remote surgery [1]. Moreover, the techno-
logical advancements and the need for automation in
every industry have caused an exponential increase in
the number of IoT devices, which are expected to reach
50 billion by 2030 [2]; hence, the surge in demand for
network connectivity is inevitable.

In this evolving situation, network service operators
face two major challenges: 1) It is hard to cope with
the surge in demand for network resources, e.g., prior
research has shown that service quality drops with an in-
creased number of connections [3] and 2) Some connnec-
tions require accountable Quality of Service (QoS), e.g., a
surgeon performing an emergency remote surgery over
5G during high congestion times needs a reliable connec-
tion with guaranteed bandwidth and latency bounds.

We propose a novel solution for the above problems
with Just-in-Time Resource Allocation - that is, instead of
fixed long-term contracts, operators offer dynamic short-
term network service contracts with strict service level
guarantees. The operators are expected to introduce
more flexible and tailor-made service offerings consider-
ing their coverage and capacity and if and only if they can
guarantee the Service Level Agreement (SLA) promised.
This is advantageous for both operators and customers:
operators can sell their peak-time contracts at higher
prices and customers can shift their usage off-peak to get
better value-for-money [4]. Moreover, it may be easier
for operators to predict network behaviour in short-term
rather than long-term.

Providing short-term and dynamic network connectiv-
ity along with strict and guaranteed SLAs for millions,
probably billions, of devices is not an easy task. This
approach will cause substantial management overheads,
and customers will need to contact operators more fre-
quently for new service contracts, causing additional
staff and operating expenses. Another problem is that
SLAs are often opaque to the customer, making it diffi-
cult for them to detect an infringement.

To solve the aforementioned issues, we exploited
the inherent transparency, automation, and immutabil-
ity properties of Distributed Ledger Technology (DLT)
and proposed an end-to-end Accountable Just-In-Time
(AJIT) system architecture previously [5]. In our pro-
posal, service contracts are deployed as smart contracts
on a Permissioned Distributed Ledger (PDL) that records
all the service provisioning and can provides an im-
partial record for SLA accountability. Our initial work
focused on the network layer of our architecture and
examined overheads incurred by the network to allocate
resources. This paper focuses on the application layer
and presents a Just-in-Time architecture for service pro-
visioning, which outlines the building blocks for user
access to the ledger to get service contracts (§III). We
further analyse and compare permissioned and permis-
sionless ledgers and analytically justify our choice of
PDLs in §IV with further discussions on the impact of
the consensus mechanism on their execution. We discuss
the future directions and conclude this paper in §V.978-0-7381-1420-0/21/$31.00 ©2021 IEEE

II. RELATED WORK

This study is focused on Distributed Ledger Tech-
nology for Accountable Service Level Agreements (SLAs).
The two main classes of distributed ledgers are per-
missionless (e.g., Bitcoin and Ethereum [6]) and permis-
sioned (e.g., Hyperledger Fabric [7] and Quorum [8]).
In this work, we propose that customers choose between
available service contracts on a permissioned ledger,
interacting with the ledger through a DApp [9]. A similar
concept of a mobile application which allows users to
choose between network contracts is presented by [4],
in which authors show that it is an advantage for both
the operator and the customers: for customers to shift
their usage to off-peak times and for operators to manage
congestion by offering discounted services during less-
congested times. However, this work neither addresses
the problem of accountability nor allows the customers
to choose between operators.

A blockchain-centred DApp for multi-domain archi-
tecture is presented by [10], which proposes smart con-
tracts to be used as SLAs to enable transparency in
contract agreements between administrative domains.
Further proposals to apply smart contract as SLAs in
the Cloud computing environment are presented by [11]
and [12]. [11] is focused on SLA management with smart
contracts in a decentralised computing environment,
and Uriarte et al.’s [12] major focus is more inclined
towards dynamic SLA management and they propose an
architecture to transform SLA into smart contracts. Also,
neither of them discuss resource provisioning through
short-term and dynamic service contracts

In [13] the authors suggest adopting smart contracts
to model simple service agreements for sharing network
resources in a decentralised fashion among home and
business as small-cell providers. Our proposal, instead,
considers traditional service provisioning by operators
controlled base stations.

As far as we know, no work addresses the problem of
accountability and provides an end-to-end architecture
of smart contract focused SLAs.

III. SYSTEM DESIGN

Our system proposal is to set up a guaranteed Service
Level Agreement just-in-time between an operator and
customer. This is done by recording the agreement as a
smart contract deployed on an appropriate Distributed
Ledger Technology (DLT).

The key design requirement is that the DLT should
be able to support the expected number of transac-
tions. Although transaction rates of permissionless block
chains (e.g., Bitcoin allows 7 transactions per second
and Ethereum 15 transactions per second [14]) might
be insufficient, recent work [15] has shown that up to
20,000 transactions per second can be sustained with
Permissioned Distributed Ledgers (PDLs). Therefore, we
advocate the use of PDLs.

Three different type of entities interact with this sys-
tem: 1) Customers require network services and request
for contracts - they have limited access to the ledger
through a DApp and don’t take part in the consensus,
2) Service Operators advertise their services on a portal
and allocate services to the customers upon request -
they run the consensus and deploy the service contracts
on the ledger 3) Regulatory Authorities only observe
the whole system for any misbehaviour - they take part
in the consensus.

Our system is built atop a specific type of DLT, Per-
missioned Distributed Ledger (PDL), maintained by a
consortium of operators and regulatory authorities. We
envision a DLT centered market place where operators
can advertise their available services, backed by smart
contracts deployed on a PDL. Most countries or legal
jurisdictions only have a limited number of operators.
Therefore, considering the nature of the architecture, we
believe that a permissioned scenario is the best-fit.

The distributed consensus nature of DLTs guarantees
that the system remains honest as long the required
threshold of participants (dependent on the particular
distributed consensus algorithm used) behaves honestly.
This means that even if the network is maintained by
the operators, they can not cheat customers without the
existence of a big enough cartel of operators. Moreover,
the transparent nature of the DLT allows the regulatory
authorities to act as watchdogs. This, coupled with the
fact that the operator nodes identities are known in ad-
vance, due to the permissioned nature of the DLT, allows
for an accurate pinpointing in case of misbehaviour.

In addition to participants, the system model also
contains a Distributed Application (DApp), see Fig-
ure 1. This application can be installed as a mobile or
desktop application and will run a discovery service
every specified time interval to maintain an updated
log of available operators in the vicinity along with
their offered contracts and corresponding service quality.
Service providers advertise their service contracts, and
the customers purchase them through this DApp. When
a user wants to buy a service contract, the DApp will
list all the available contracts from the operators as per
user’s preference. When a customer chooses a contract
and pays for it, the DApp sends the payment to the
contract escrow, where it is kept until the contract is
completed, and notifies the operator to start the services.

The sequence of actions required to set up connectivity
is depicted in Figure 2:

1) Contracts are advertised on a public portal acces-
sible through the DApp, so that a customer can
select one as per their requirements. Customers are
required to approve an appropriate payment with
the contract request. These funds will be held in
escrow, to be paid to the operator upon successful
delivery of service.

Fig. 1. Architecture of the proposed Distributed Application (DApp)
- It is run on users’ device and acts as gateway to pull/push data
from/to the PDL. JIT-Controller [5] performs network level resource
allocation.

Fig. 2. Just-in-Time Resource Allocation - Architecture

2) Once the customer requests a service, the DApp
sends an activation request, signed by the cus-
tomer, to the corresponding smart contract residing
in the PDL. Note that on top of any payment to the
operator if the smart contract executes successfully,
the customer incurs a cost simply to execute it
(to prevent denial of capability attacks, where a
malicious customer requests services and makes
an operator reserve network resources without any
intention of using and paying for the services).

3) The smart contract is executed, first checking with
the operator whether there are available resources
that can be reserved in order to provide the re-
quested quality of service. Depending on the juris-
diction and the nature of the contract, regulators
may also need to be informed about the potential
service contract being agreed upon.

4) Once the operator confirms that it is able to deliver
the service (and if needed, regulator approval is ob-
tained), appropriate resource reservations are made
on operator hardware such as base stations. Then,
the initial state is setup to monitor the network
connection during run time.

5) At this point, everything is setup, and the operator
provides service. Details of the service provided are
recorded in a dedicated state channel established
between customer and operator.

6) At the end of service, the operator provides proof
from the state channel that the agreed upon service
has been delivered, and claims the service payment
locked in escrow by the contract.

IV. EVALUATION

As our study is focused on Accountable Allocation
of Network Resources, to measure the viability of our
proposal it is important to measure the overheads in-
curred by the employed PDL and smart contracts. The
rationale behind adopting a PDL over a permissionless
approach is explained in §III. However, to measure the
practical impact, we deployed 200 service contracts on
two different permissioned ledgers (i.e. Quorum [8] and
Hyperledger Fabric [7]) and a permissionless ledger (i.e.
the public Ethereum Ropsten testnet).

The example service contracts are executed on two
local nodes of Hyperledger Fabric (Version 1.3.0) through
a Hyperledger Burrow [16] running on a Ubuntu 64-bit,
16.04.7 virtual machine with 4.096 GB of RAM, and a
2.3 GHz Dual-Core Intel Core i5 processor. For Quorum
we used an identical virtual machine as Hyperledger
Fabric and installed two Quorum nodes with RAFT [17]
consensus.

Overall, Quorum’s Raft protocol is a leadership model,
in which a single leader is elected to manage the repli-
cation of transactions to other nodes and is ideal for
closed groups of nodes where fast block creation is
required, ideally at the granularity of milliseconds [17].
In Hyperledger Fabric transactions are sent to endorsers
first (in our case we have two endorsers) who endorse
the transactions as per the endorsing policy of the ledger.
Once the transactions are endorsed, they are sent to
orderers (one orderer in our experimental setup), who
use Apache Kafka to reach a consensus [18].

This difference in the speed of the two consensus
algorithms is reflected in our analysis, in which Quorum
outperforms Hyperledger Fabric on average. The mean
execution time for Hyperledger Fabric is ≈ 91 ms which
is a bit higher than Quorum’s that is ≈ 68 ms. How-
ever, the standard deviation is ≈ 16 ms and ≈ 24 ms
for Hyperledger Fabric and Quorum, respectively. That
is, although Quorum has lower execution times than
Hyperledger Fabric, the standard deviation is higher,
meaning that more diversified execution times should
be expected with Quorum. This is also visible from
Figure 3(b), where Quorum is slower than Hyperledger
Fabric in the worst case. This indicates that Hyperledger
Fabric could be a more desirable alternative in applica-
tion scenarios where the consistency of performances is
more desirable than speed.

(a) Permissionless Ledger (b) Permissioned Ledgers

Fig. 3. a) Execution latency in a permissionless environment - the min and max values are 4 sec and 119 sec. respectively b) Execution latency in
a permissioned environment - The min and max values for HyperLedger Fabric(HLF) are ≈ 70 ms and ≈ 150 ms respectively and for Quorum
are ≈ 31 ms and ≈ 161 ms respectively. It is to be noted that in the permissionless case (a), the latency is in seconds, but for permissioned
ledgers (b), latency is in milliseconds.

In addition to our prior work [5], we deployed another
200 contracts on Ropsten through a node with an Intel
Xeon CPU E5-2660 (2.60 GHz with 20 cores) and 94G
RAM. The analysis shows that it took an average of ≈
49.3 sec to execute the same contracts on the Ropsten
testnet with a standard deviation of ≈ 35 sec.

The difference between contracts execution times mea-
sured on permissioned and permissionless ledgers is
an entire order of magnitude, confirming the perfor-
mance advantages of permissioned ledgers. Another fac-
tor, however, is that the permissionless experiment was
conducted on a possibly congested public testnet, while
both permissioned experiments were set up on dedicated
private testnets.

V. CONCLUSION AND FUTURE WORK

This paper envisions a new-era of modern resource
provisioning mechanisms, where both customers and
operators benefit from flexible and dynamic service con-
tracts. We argued that short-term and dynamic service
contracts with strict Service Level Agreement (SLA)
guarantees are important for the viability of future life-
critical applications of 5G. It can be challenging and
resource-intensive to allocate resources to billions of
devices for the short-term and provide them with an
SLA guarantee. To solve this problem, we have proposed
an end-to-end architecture based on Permissioned Dis-
tributed Ledgers (PDLs) which records SLAs as smart
contracts. These service contracts are deployed on a
PDL and are accessible by customers through a Dis-
tributed App (DApp). Adopting a Distributed Ledger
enables automation, transparency, and immutability in
the system: all the service metrics will automatically
be recorded to the ledger through a smart contract,
and any violation will trigger automated compensation,
avoiding the huge overheads of traditional methods.

Our evaluation suggested that a Permissioned Ledger is
essential for scalability and manageable overheads.

We aim to extend this work by studying dynamic pric-
ing through smart contracts in which machine learning
techniques can forecast service quality and help service
contracts set their pricing parameters accordingly.

REFERENCES

[1] S. Baggioni, “Remote Surgery, Robotics and more - how 5G
is helping transform healthcare,” https://bit.ly/3oyCqKu, 2019,
[Online; accessed 06-Oct-2020].

[2] Statista, “Number of internet of things (IoT) connected devices
worldwide in 2018, 2025 and 2030,” http://bit.ly/30tQpaA, 2021,
[Online; accessed 08 March 2021].

[3] E. Obiodu, N. Sastry, and A. Raman, “Towards a taxonomy of
differentiated service classes in the 5g era,” in 2018 IEEE 5G World
Forum (5GWF). IEEE, 2018, pp. 129–134.

[4] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang, “Tube: Time-
dependent pricing for mobile data,” in Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication, 2012, pp. 247–258.

[5] T. Faisal, D. Di Francesco Maesa, N. Sastry, and S. Mangiante,
“Ajit: Accountable just-in-time network resource allocation with
smart contracts,” in Proceedings of the ACM MobiArch 2020 The 15th
Workshop on Mobility in the Evolving Internet Architecture, 2020, pp.
48–53.

[6] E. Foundation, “Ethereum,” https://ethereum.org/en/, 2020,
[Online; accessed 23-Nov-2020].

[7] Hyperledger, “Hyperledger Fabric,” https://bit.ly/3gyHD22,
2020, [Online; accessed 23-Nov-2020].

[8] Quorum, “Consensus Quorum Blockchain,”
http://bit.ly/2OgZGzZ, 2021, [Online; accessed 08 March
2021].

[9] M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A review on
distributed application processing frameworks in smart mobile
devices for mobile cloud computing,” IEEE Communications sur-
veys & tutorials, vol. 15, no. 3, pp. 1294–1313, 2012.

[10] R. V. Rosa and C. E. Rothenberg, “Blockchain-based decentralized
applications for multiple administrative domain networking,”
IEEE Communications Standards Magazine, vol. 2, no. 3, pp. 29–37,
2018.

[11] P. Kochovski, V. Stankovski, S. Gec, F. Faticanti, M. Savi, D. Sira-
cusa, and S. Kum, “Smart contracts for service-level agreements
in edge-to-cloud computing,” Journal of Grid Computing, pp. 1–18,
2020.

[12] R. B. Uriarte, R. de Nicola, and K. Kritikos, “Towards distributed
sla management with smart contracts and blockchain,” in 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2018, pp. 266–271.

[13] E. Di Pascale, J. McMenamy, I. Macaluso, and L. Doyle, “Smart
contract slas for dense small-cell-as-a-service,” arXiv preprint
arXiv:1703.04502, 2017.

[14] M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge
of ethereum: An initial quantitative analysis,” in 2019 IEEE Inter-
national Conference on Service-Oriented System Engineering (SOSE).
IEEE, 2019, pp. 167–176.

[15] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scal-
ing hyperledger fabric to 20,000 transactions per second,” in
2019 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2019, pp. 455–463.

[16] HyperLedger, “Burrow,” https://bit.ly/3nmcukT, 2020, [Online;
accessed 12 Dec 2020].

[17] GoQuorum, “Raft Consensus Overview,” http://bit.ly/3rA1SAZ,
2021, [Online; accessed 08 March 2021].

[18] Apache, “Kafka documentation,” http://bit.ly/3vmkqXI, 2021,
[Online; accessed 08 March 2021].

